
WrightEagle 2D Soccer Simulation
Team Description 2012

Aijun Bai, Haochong Zhang, Guanghui Lu, Miao Jiang and Xiaoping Chen

Department of Computer Science,
University of Science and Technology of China,
baj@mail.ustc.edu.cn, xpchen@ustc.edu.cn

Abstract. WrightEagle 2D soccer simulation team is a 2D soccer sim-
ulation team which has been participating in annual RoboCup compe-
titions since 1999 and won 3 champions and 4 runners-up in the past 7
years. In this paper, we briefly present our current research efforts and
some newly introduced techniques since the last competition.

1 Introduction

WrightEagle 2D soccer simulation team, which was established in 1998 as the
first branch of WrightEagle RoboCup team developed by Multi-agent Systems
Lab. of USTC, has been participating in annual competitions of RoboCup since
1999. Recent years, we have won the champion of RoboCup 2011, 2009 and 2006,
the runner-up of RoboCup 2010, 2008, 2007 and 2005.

We take RoboCup soccer simulation 2D as a typical problem of multi-agent
systems, and our long-term goal is to do research in decision-making and other
challenging projects in artificial intelligence [3]. This year, we developed some
new techniques for both the low-level skills and the high level decision-making
model in our new team WE2011, based on our research efforts [5, 9, 10, 8, 7, 13,
12, 2, 11]. In this paper, we present a brief description of some of our progress
mentioned above.

In 2011, we also released the newest version (3.0.0) of our team’s base code
WrightEagleBASE to the public as an open-source software which can be freely
accessed from our team’s website.1 We hope that our released software will be
helpful to a new team who wants to participate in the RoboCup event and/or
start a research of multi-agent systems.

The reminder of this paper is organised as follows. Section 2 introduces the
Opponent Formation Detection System of our team, and empirically evaluates
its performance. Section 3 presents the Monte Carlo Localization techniques used
in our team with some empirical results. Section 4 briefly describes the newly
developed Multi-step Positioning and Passing Behaviours. Finally, the paper is
concluded in Section 5.



Fig. 1. Opponent formation detection process

2 Opponent Formation Detection System

Detection of the opponent’s formation type takes an important role in oppo-
nent modeling, affecting our team’s global strategy substantially. An opponent
formation detection system (OFDS) was implemented to tackle this issue.

In OFDS, we use Delaunay Triangulation [1] to model the opponent’s for-
mation, and categorize the formation space into several predefined types, such
as 433, 442, 4231, etc. Each type of the formation is initialized by some default
samples based on statistic data taken from some typical logfiles. As the game
progresses, all types of the formation are constantly inserted more samples based
on the current state of the field. The update procedure also computes the differ-
ence for each sample inserted. Then the type of formation, which has the minimal
cumulative differences currently, will be selected as the opponent’s formation. It
is worth pointing out that the opponent’s formation types in attack and defense
situation are treated separately, and updated in different time in our team.

To evaluate OFDS, we ran our team against Helios10, which uses formation
4231 for both attack and defense situation by default, for 250 games indepen-
dently. The empirical results for each player (including our online coach denoted
by player 12) are shown in Figure 1, where x axis represents the cycle number
during a game, and y axis represents the number of games which OFDS cor-
rectly detected the opponent formation (i.e. 4231). Notice that the detection
processes of both formation types in attack and defense situation for each player
are depicted in Figure 1 without distinguish. Different players may have differ-
ent probabilities of correct detection depending on the precision of their internal
state information of the opponents. For example, the online coach always has
the most precise world state, but the goalie who stands closely to the goal most

1 http://www.wrighteagle.org/2d/



Table 1. Average error of the player’s own expected state

x(m) y(m) vx(m/s) vy(m/s) db(Deg) dn(Deg)

0.047 0.046 0.0014 0.0013 0.44 1.5e-6

of the time can only observe precisely the nearby area. It can be seen from
Figure 1 that OFDS converged after about 2000 cycles from the beginning of
a match, and resulted at about 0.8 the average probability of correct detection
summarized in all players (including online coach).

3 Monte Carlo Localization

In RoboCup 2D domain, the player must overcome the difficulty that it can
only receive local and noisy observations, to obtain a precise enough estimation
of the environment’s current state. In our team, the player estimates the current
state from its belief [6]. A belief b is a probability distribution over state space,
with b(s) denoting the probability that the environment is actually in state s.
We assume conditional independence between individual objects, then the belief
b(s) can be expressed as

b(s) =
∏

0≤i≤22

bi(s[i]), (1)

where s is the full state vector, s[i] is the partial state vector for object i, and
bi(s[i]) is the marginal distribution for s[i]. A set of mi weighted samples (also
known as particles) are then used to approximate bi as:

bi(s[i]) ≈ {xij , wij}j=1...mi , (2)

where xij is a sampled state for object i, and wij represents the approximated
probability that object i is in state xij (obviously

∑
1≤j≤mi

wij = 1).
In the beginning of each cycle, these samples are updated by Monte Carlo

procedures using the domain’s motion model and sensor model [4]. In our team,
the player assumes that all other players share a same predefined behavior model:
they will execute a random kick if the ball is kickable for them, or a random
walk otherwise. Finally, the environment’s current state s is estimated as:

s[i] =
∑

1≤j≤mi

wijxij . (3)

Based on empirical results taken from actual competitions, the estimated
state is sufficient for the player to make good decisions, particularly for the state
of the player itself and other close objects.

Table 1 shows the average error between the player’s self-maintained own
expected state information and the server’s actual state information during one
random selected competition, where x, y, vx, vy, db and dn represent the player’s
x-position, y-position, x-speed, y-speed, direction of the body and the direction



Fig. 2. Belief on other players’ position information

of the neck respectively. It is worth mentioning that the error of neck dir is
almost zero, because the turn neck action in the 2D domain is executed without
any noise.

Figure 2 depicts an example of the player’s belief on other players’ position
information (i.e. probability distribution of (x, y) for each player) during that
match when the player, denoted by the small white circle, is holding the ball
and facing the opponents’ goal (the player’s team is on the left side) for awhile.
The particular (x, y) probability distributions of the player itself and the ball
are not showed in Figure 2, because they are relatively too narrow and high to
be drawn appropriately in the same figure.

4 Multi-step Positioning and Passing Behaviors

Positioning behavior focuses on the problem that where the players position
themselves when they do not have the ball in the attack situation. The perfor-
mance of the positioning behavior benefits substantially if it can think more than
one “step” in the future. For example, if the player 11 successfully speculates
that the ball holding by teammate 10 will be passed to teammate 4 in the near
future, then it can get ready in advance to cooperate with teammate 4 to make
a potential attack by positioning itself to some appropriate places.

A ball running track is defined for this purpose as the sequential ball holders
during a successful attack process denoted by a list of state nodes. In the first
node of a ball running track, one of our teammates is holding or intercepting the
ball. In the last node, the ball will be shot directly to the opponent’s goal. Note
that all the nodes except the first one represent some virtual states in the future.
We assumed that each player in the ball running track has only two available
macro-actions: pass and dribble.

A forward search tree is constructed to find the most potential attack process
based on the successful probability of a ball running track using some heuristic
search techniques. Once the search procedure is finished, the player will find out



the most potential teammate who will finally pass the ball to it, and the steps
that should be considered in its own positioning behavior. Here a step represents
a successful pass between teammates.

A respective multi-step passing behavior is also implemented. It is an option
(i.e. macro-action) based forward search algorithm, briefly described as follows.

1. Generate all possible pass behaviors using previous greedy search algorithm;
2. Sample some behaviors and construct them as options;
3. For each option, use a simulator to predict belief state after executing it;
4. Repeat step 1, 2 and 3 to certain horizon H;
5. Select the maximum rewarded option chain.

Currently, the multi-step positioning and passing behaviors can only work
in a very limited way due to the unpredictable property of the environment,
especially when the states are far in the future. Our future work intends to
improve the performance by considering more abstractly.

5 Conclusions

This paper introduced our RoboCup soccer simulation 2D team, WrightEagle,
and described our current research efforts and some newly introduced techniques
from last competition, including: 1) Opponent Formation Detection System, 2)
Monte Carlo Localization, and 3) Multi-step Positioning and Passing Behaviors.
It can be seen from the empirical results that our team’s final perfermance has
been improved based on these efforts.

References

1. Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic envi-
ronment. RoboCup 2007: Robot Soccer World Cup XI pp. 377–384 (2008)

2. Bai, A., Wu, F., Chen, X.: Online planning for large mdps with maxq decomposi-
tion (extended abstract). In: Proc. of 11th Int. Conf. on Autonomous Agents and
Multiagent Systems. Valencia, Spain (June 2012)

3. Chen, X.: Challenges in research on autonomous robots. Communications of China
Computer Federation 3(12) (2007)

4. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile
robots. In: IEEE International Conference on Robotics and Automation. vol. 2,
pp. 1322–1328. IEEE (2001)

5. Fan, C., Chen, X.: Bounded incremental real-time dynamic programming. In: Fron-
tiers in the Convergence of Bioscience and Information Technologies, 2007. FBIT
2007. pp. 637–644. IEEE (2007)

6. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

7. Shi, K., Chen, X.: Action-driven markov decision process and the application in
robocup. Journal of Chinese Computer Systems (2009)

8. Wu, F., Chen, X.: Solving large-scale and sparse-reward dec-pomdps with
correlation-mdps. RoboCup 2007: Robot Soccer World Cup XI pp. 208–219 (2008)



9. Wu, F., Zilberstein, S., Chen, X.: Multi-agent online planning with communication.
In: Proc. of the 19th Int. Conf. on Automated Planning and Scheduling. pp. 321–
328 (2009)

10. Wu, F., Zilberstein, S., Chen, X.: Point-based policy generation for decentral-
ized pomdps. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1. pp. 1307–1314. International
Foundation for Autonomous Agents and Multiagent Systems (2010)

11. Wu, F., Zilberstein, S., Chen, X.: Online planning for ad hoc autonomous agent
teams. In: Twenty-Second International Joint Conference on Artificial Intelligence
(2011)

12. Wu, F., Zilberstein, S., Chen, X.: Online planning for multi-agent systems with
bounded communication. Artificial Intelligence 175(2), 487–511 (2011)

13. Zhang, Z., Chen, X.: Accelerating point-based pomdp algorithms via greedy strate-
gies. Simulation, Modeling, and Programming for Autonomous Robots pp. 545–556
(2010)


