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Probabilistic Planning Background

Question

What’s the relationship between Simulation 2D and POMDP?
Simulation 2D’s server can be considered as POMDP
model.
Partially observable Markov decision processes
(POMDPs) provide a principled mathematical framework
for planning under uncertainty in both action effects and
state observability.
Existing POMDP algorithms can’t solve problems as
complex as Simulation 2D.
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Deterministic Planning

Brief introduction to Probabilistic Planning

Introduction
Probabilistic planning describes a set of techniques that an
intelligent agent can use to choose actions in the face of
uncertainty about its environment and the results of its
actions.
Probabilistic means that the techniques model uncertainty
using probability theory and select actions in order to
maximize expected utility.
Planning means the techniques can reason about
long-term goals that require multiple actions to accomplish,
often taking advantage of feedback from the environment
to reduce uncertainty and help select actions on the fly.
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Deterministic Planning

Deterministic planning problem

Indoor navigation task

Consider an indoor navigation task in which a robot must
navigate to a goal position at the end of a hallway without
colliding with the walls or other obstacles. To start with, assume
that the robot has a complete map of the hallway and that it
knows at all times both its own position and the position of the
goal. Furthermore, assume that to a first approximation we can
model the robots position as taking on discrete values in a map
grid.
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Deterministic Planning

Example 1
Figure 1 shows an example map for such a task. The planning
problem is to choose a sequence of one-step motion actions
that will cause the robot at the west side of the map to reach the
goal at the east side without colliding with walls or obstacles.
One such sequence is east, east, north, east, east, south. This
is a classical discrete deterministic planning problem.

Figure 1: A simple indoor navigation problem
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Deterministic Planning

General form of deterministic planning problems
In general, this class of problem has world states drawn
from a finite set S and actions available to the agent drawn
from a finite set A. State changes occur in discrete steps
according to a transition function T : S ×A → S. The
world starts in some known state s0 ∈ S.
Under a deterministic world model it is natural to represent
the agents policy as a sequence of actions
π = a0, a1, a2, . . . . The corresponding world states the
agent will reach can be calculated using the transition
function: s1 = T (s0, a0), s2 = T (s1, a1), etc.
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Deterministic Planning

Definition: finite horizon
Sometimes there is a pre-specified maximum policy length; this
is called a finite horizon problem, and the maximum number of
actions is called the horizon length, denoted h.

Definition: infinite horizon
Infinite-horizon problems have no pre-specified maximum
sequence length, in which case we write h = ∞.

Definition: goal states
There may also be a set G ⊆ S of absorbing goal states, also
called terminal states, such that the action sequence ends
when a terminal state is reached, regardless of the horizon.
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Deterministic Planning

Definition: preference level
There are many ways to formulate the planning problem. One
might wish to find any action sequence that achieves a goal
state, or the shortest such action sequence, or the lowest cost
sequence (if actions have different costs). More generally, any
of these preferences can be captured by specifying a utility
function U that maps the sequence of actions and
corresponding states to a numeric score, such that larger
scores indicate preferred plans.

preference level = U(h, π, s0) = U(s0, a0, s1, a1, . . . , sh−1, ah−1)
(1)

Then optimal control means selecting a policy π that maximizes
U(h, π, s0).

zzz@mail.ustc.edu.cn Probabilistic Planning Background 10 / 62



Probabilistic Planning Background

Deterministic Planning

Weighted sum of immediate reward values
We focus on a restricted class of problems for which the utility
function can be expressed as a weighted sum of immediate reward
values. Immediate rewards are specified by a function R : S ×A → R
and

U(h, π, s0) :=
h−1∑
t=0

γtR(st , at), (2)

where γ ∈ (0, 1] is called the discount factor. Multiplying the reward at
step t by γt serves to place more weight on the earlier rewards in the
sequence. If γ < 1 we say the problem is discounted; if γ = 1 all time
steps have equal weight and the problem is undiscounted.
Discounting is sometimes motivated by real world effects such as
interest rates, but most often it is used as a convenient way of
ensuring that the reward sum converges in infinite-horizon problems.
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Uncertainty in State Transitions

Example 2
A robots actions frequently have unexpected outcomes. For
example, a robot attempting to move using dead reckoning will
often suffer from position errors due to slippage. We can add
an (exaggerated) version of this error to the original navigation
domain by assuming that each motion action has only a 50%
chance of achieving its desired effect, and leaves the robot in
the same cell the other 50% of the time. If the robots move is
blocked by a wall or other obstacle, it fails 100% of the time.
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Uncertainty in State Transitions

Example 2 (cont’d)
Figure 2 shows this kind of uncertainty graphically. The result of
applying the east action can no longer be predicted with
certainty; instead, there are two possible outcomes with
associated probabilities. However, for the time being we
assume that after the action is completed the robot learns with
certainty which outcome actually occurred. (Perhaps it
periodically receives accurate position information from radio
beacons in the hallway.)

Figure 2: Navigation problem with uncertainty in state transitions
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Uncertainty in State Transitions

General form of Uncertainty in State Transitions
In general, this model requires a new type of transition function
T : S ×A →

∏
(S) that maps a state/action pair to a probability

distribution of possible next states. T (s, a, s0) denotes the
probability of transitioning from s to s0 when action a is applied.
Note that when T is specified in this form the system is
Markovian, meaning that its future behavior is conditionally
independent of the history of states and actions given the
current state st . For this reason the model is called a Markov
decision process (MDP).
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Uncertainty in State Transitions

Graphical model for an MDP
Figure 3 shows the graphical model for an MDP. Square nodes
in a graphical model represent variables that are controlled by
the agent. Circular nodes represent uncontrolled dependent
variables. Directed edges in the graph are used to indicate
dependence relationships between variables. Note the chain
structure of the MDP graphical model, which derives from the
Markovian structure.

Figure 3: Graphical model for an MDP
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Uncertainty in State Transitions

Preference level
According to the decision-theoretic definition of rationality, in
the presence of uncertainty the agent should choose the policy
that maximizes expected utility

preference level = E [U(h, π, s0)] = E [
h−1∑
t=0

γtR(st , at)]. (3)
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Partial Observability

Introduction
In the last section we rather unrealistically assumed that the
navigating robot received perfectly accurate position information
after every time step. In this section, we relax that assumption.
In particular, suppose the robot cannot tell how far along the
hallway it has traveled. Instead, it has a noisy obstacle sensor
that nominally returns an obstacle reading when the map cell to
the east of the robot is blocked and a clear reading otherwise,
but gives an incorrect reading 10% of the time.
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Partial Observability

Example 3
As figure 4 shows, now we have the additional complication of the noisy
observation. Taken together there are four possible results, labeled condition
A (success, obstacle observation), B (success, clear observation), C (failure,
clear observation), and D (failure, obstacle observation).

Figure 4: (left) Fully expanded view of state transition.
(right) Information available to the robot.
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Partial Observability

Example 3 (cont’d)
Unfortunately, because the robot receives only the
observation, it cannot distinguish between conditions A
and D, nor between conditions B and C. As a result, its
available information is better represented by the transition
diagram on the right. Conditions A and D have been
combined into condition AD, and B and C have been
combined into BC.
Looking more closely at condition AD, we see that the
robot cannot infer its position with certainty, since condition
A and condition D have the robot in different positions.
Instead, the likelihoods of possible positions of the rover
are marked on the map; the values correspond to the
relative likelihood of condition A and condition D.
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partially observable Markov decision process
This type of model is called a partially observable Markov
decision process (POMDP). In general, a POMDP is an
MDP extended to include an observation model. Rather
than receiving complete state information st after each
step of execution, in a POMDP model the agent is
assumed to receive a noisy observation ot .
POMDPs model observations probabilistically. The set of
possible observations is a discrete set O, and each
observation carries information about the preceding action
and current state according to the noisy observation
function O : A× S →

∏
(O), defined such that

O(a, s′, o) := Pr(Ot+1 = o|at = a, st+1 = s′) (4)
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Partial Observability

Belief
The agent is also assumed to have a probability distribution
b0 ∈

∏
(S) describing the initial state of the system, such that

b0(s) = Pr(s0 = s). In general, we describe a probability
distribution over S as a belief, and denote the space of beliefs
with B =

∏
(S). Beliefs can be thought of as length-|S| vectors,

and because the entries of a belief vector must sum to 1, B is a
simplex of dimension |S|-1 embedded in R|S|.
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Partial Observability

Graphical model for a POMDP
Figure 4 shows the graphical model for a POMDP. The chain
structure of the state sequence from the MDP is retained, but
the agent no longer has direct access to the state information at
each time step. Instead, it can infer only uncertain state
information from the history of observations.

Figure 5: Graphical model for a POMDP
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Partial Observability

Bayesian updating

At each time step, the agent can use Bayesian reasoning to
generate an updated belief. Let bao denote the agent’s updated
belief at the next time step after taking action a and receiving
observation o. That is,

bao(s′) := Pr(st+1 = s′|bt = b, at = a, ot+1 = o) (5)

The updated belief can be calculated as follows:

bao(s′) = Pr(s′|b, a, o) =
Pr(s′, o|b, a)

Pr(o|b, a)

=
Pr(o|a, s′)

∑
s Pr(s′|s, a)Pr(s|b)∑

s̄ Pr(o|a, s̄)
∑

s Pr(s̄|s, a)Pr(s|b)

=
O(a, s′, o)

∑
s T (s, a, s′)b(s)∑

s̄ O(a, s̄, o)
∑

s T (s, a, s̄)b(s)
(6)

zzz@mail.ustc.edu.cn Probabilistic Planning Background 25 / 62



Probabilistic Planning Background

Partial Observability

Bayesian updating

At each time step, the agent can use Bayesian reasoning to
generate an updated belief. Let bao denote the agent’s updated
belief at the next time step after taking action a and receiving
observation o. That is,

bao(s′) := Pr(st+1 = s′|bt = b, at = a, ot+1 = o) (5)

The updated belief can be calculated as follows:

bao(s′) = Pr(s′|b, a, o) =
Pr(s′, o|b, a)

Pr(o|b, a)

=
Pr(o|a, s′)

∑
s Pr(s′|s, a)Pr(s|b)∑

s̄ Pr(o|a, s̄)
∑

s Pr(s̄|s, a)Pr(s|b)

=
O(a, s′, o)

∑
s T (s, a, s′)b(s)∑

s̄ O(a, s̄, o)
∑

s T (s, a, s̄)b(s)
(6)

zzz@mail.ustc.edu.cn Probabilistic Planning Background 25 / 62



Probabilistic Planning Background

Partial Observability

Policy
When planning in an MDP model, the agent’s policy could be
conditioned on a history of states and actions. In a POMDP
model, the agent has knowledge only of actions and
observations, so a deterministic policy with horizon h has the
form

at = π(h, a0, o1, a1, o2, a2, ·, at−1, ot). (7)

With an MDP, the history could be safely discarded given the
current state because the system was Markovian. With a
POMDP, the agent does not have access to the current state, but
it can use the current belief as a sufficient statistic for the history.
Thus, given the current belief, the agent gains no advantage
from conditioning on history, and it can restrict its reasoning to
policies in the form

at = π(h, bt). (8)
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Partial Observability

Transform the POMDP into a belief MDP
This change of variables suggests transforming the POMDP into a
belief MDP, as follows:

The POMDP belief simplex B plays the role of the MDP state set.

The action set, horizon, and discount factor of the POMDP are
used unchanged for the belief MDP.

The transition function T̃ of the belief MDP gives the probability
of transitioning from one belief to another according to the
observation model and belief update rule

T̃ (b, a, b′) := Pr(b′|b, a) =
∑

o
Pr(b′|b, a, o)Pr(o|b, a)

=
∑

o
δ(b′, bao)

∑
s,s′

O(a, s′, o)T (s, a, s′)b(s) (9)

where δ(x , y) = 1 if x = y and 0 otherwise.
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Transform the POMDP into a belief MDP (cont’d)

The reward function R̃ gives the expected immediate
reward from applying an action in a given belief

R̃(b, a) := Ebt=b[R(st , a)] =
∑

s
R(s, a)b(s) (10)

Belief MDP
Note that the state set of the belief MDP is the POMDP belief
simplex, which is uncountably infinite. Although our earlier
discussion of MDPs assumed that the state space was finite,
the same theoretical results go through with an infinite state set.
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Belief MDP Value Function Structure

Piecewise-linear and convex
The value functions of belief MDP policies have a special
structure that makes it possible to generalize value
iteration. For any finite horizon h, the optimal value
function V ∗

h is piecewise-linear and convex (PWLC).
Formally, let π be any policy whose actions are not
conditioned on the initial belief (such as a policy tree) and
let α be a length-|S| vector such that α(s) is the expected
value of following π starting from state s:

α(s) = Eπ,s0=s[
h−1∑
t=0

γtR(st , at)] (11)
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Belief MDP Value Function Structure

Piecewise-linear and convex (cont’d)
Then the value of executing π starting from a belief b is

Jπ(b) = Eπ,b0=b[
h−1∑
t=0

γtR(st , at)]

=
∑

s

b(s)Eπ,s0=s[
h−1∑
t=0

γtR(st , at)]

=
∑

s

b(s)α(s) = αT b (12)

Abusing notation, we also write

α(b) = αT b (13)
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Piecewise-linear and convex (cont’d)
Then the value of executing π starting from a belief b is

Jπ(b) = Eπ,b0=b[
h−1∑
t=0

γtR(st , at)]

=
∑

s

b(s)Eπ,s0=s[
h−1∑
t=0

γtR(st , at)]

=
∑

s

b(s)α(s) = αT b (12)

Abusing notation, we also write

α(b) = αT b (13)
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Notation
When the max operator is applied to a set of α vectors,
each vector is interpreted in this second sense, as a
function over the belief simplex. In other words, if

V = max{α1, · · · , αn}, (14)

then
V (b) := max

αi
αT

i b. (15)
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Example 4: TIGER problem
In the TIGER problem, you stand before two doors. Behind one
door is a tiger and behind the other is a pot of gold, but you do
not know which is which. Thus there are two equally likely
statesłthe tiger is located either behind the left or right door (the
tiger-left or tiger-right state). You may try to learn more using
the listen action, which provides information about which door
the tiger is lurking behind, either the noise-left or noise-right
observationłthe observation has an 85% chance of accurately
indicating the location of the tiger. Alternately, you may choose
to open one of the two doors using the open-left or open-right
actions, at which point the game ends and you will either
happily receive the gold (reward +10) or be eaten (reward
-100). The parameters of the POMDP are summarized in Table
1; the discount factor γ = 0.95.
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Figure 6: the TIGER Problem
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TIGER problem (cont’d)

s =tiger-left s =tiger-right
b0(s) 0.5 0.5

R(s, open − left) -100 10
R(s, open − right) 10 -100
R(s, listen) -1 -1

O(listen, s, noise − left) 0.85 0.15
O(listen, s, noise − right) 0.15 0.85

Table 1: TIGER problem parameters
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Policy trees
Figure 6 shows some example two-step policy trees for the TIGER POMDP and the
corresponding α vectors. The belief b varies along the x axis of the plot, from 100%
certainty of tiger-left at the extreme left to 100% certainty of tiger-right at the extreme
right. Each line in the plot relates to one of the policy trees as follows:

Figure 7: Example policy trees and corresponding α vectors for the TIGER POMDP
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Policy A
Policy A: You select listen, then select open-right if noise-left is
heard (and otherwise listen again). This is a good policy in the
tiger-left state, since the most likely course of events is that you
will hear noise-left and then perform the open-right action,
receiving the pot of gold. Policy A performs poorly in the
tiger-right state, it usually causes you to receive a small penalty
for listening twice, and in the worst case you get a false
noise-left reading and are eaten by the tiger. This is reflected in
the policy A value function, which is at its highest in the
tiger-left state and slopes down as the probability of being in
the tiger-right state increases.
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Policy B
Policy B: This policy is symmetrical with policy A, it works best
when there is a high probability of being in the tiger-right state.

Policy C
Policy C: You listen, then open whichever door you hear a noise
behind. This policy is clearly a bad idea regardless of what the
you believe, since it preferentially opens the door where the
tiger is located! This is reflected in its uniformly poor value
function.
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Max-planes representation

Let Th = {π1, ..., πn} be the set of all policy trees of depth h as
before, and let Γh = {α1, · · · , αn} be the corresponding set of α
vectors. The optimal value for any particular belief b is the
largest value assigned to b by any policy tree, meaning

V ∗
h (b) = max

π∈Jh

Jhπ(b) = max Γh := max
α∈Γh

αT b (16)

In other words, for any finite h, the function V ∗
h can be written

as the maximum of a finite number of linear functions. We call
this the max-planes representation. The existence of this
representation means that V ∗

h is a PWLC function.
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Optimal value functions
Figure 7 shows optimal value functions V ∗

h for a typical
two-state POMDP, for several values of h. For each value of h,
the thin lines are individual α vectors, each corresponding to a
depth h policy tree, and V ∗

h is the upper surface of all these α
vectors, represented with a thicker line. The number of α
vectors needed to represent V ∗

h tends to increase with h, and in
the limit V ∗

∞ may contain a countably infinite number of α
vectors, in which case it is still convex but no longer
piecewise-linear.
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Figure 8: Optimal value functions at different time horizons for a
typical two state POMDP
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Pruning

Note that the value function for policy C in Figure 6 is
everywhere dominated by policies A and B. It turns out that in a
typical POMDP most policy trees from Th are, like policy C,
sub-optimal for every belief. This means that the corresponding
α vectors are not part of the upper surface of V ∗

h . These
dominated α vectors can be pruned from the set Γh without
affecting the value function. Pruning dominated vectors can
exponentially reduce the size of the value function
representation; thus it plays an important role in practical
POMDP value iteration algorithms.
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V ∗ for an example three-state POMDP
So far we have graphed value functions for POMDPs with just
two states. POMDPs with more states have the same value
function structure, but since the value function is definen harder
to visualize. Figure 8 provides some geometrical intuition by
showing the upper surface V ∗

h for an example three-state
POMDP. The hatched area below the surface represents the
domain over which V ∗

h is defined.
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Figure 9: V ∗ for an example three-state POMDP
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Exact value iteration

Exact value iteration
Many early POMDP solution algorithms performed exact value
iteration using piecewise linear convex value function
representations (Sondik, 1971; Monahan, 1982; Cheng, 1988;
White, 1991). These algorithms had high computational
complexity both in theory and in practice; they were largely
impractical given the computing hardware available at the time.
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Exact value iteration (cont’d)
The process of computing the Bellman update H used by value
iteration can be broken up into (1) choosing a set of important
beliefs, and (2) at each selected belief, performing a local
“point-based” update that calculates the optimal α vector for
that belief from HV (Cheng, 1988). The Witness algorithm
(Littman, 1996) uses this idea to compute an exact Bellman
update using a series of local updates at points selected using
linear programs. Witness is more tractable than earlier exact VI
techniques because it generates far fewer dominated α vectors.
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Exact value iteration (cont’d)
The Incremental Pruning algorithm (Cassandra et al., 1997)
achieved similar performance improvement. Incremental
Pruning breaks up calculation of the Bellman update into a
series of batch operations and interleaves these operations
with pruning steps so that dominated α vectors are pruned
earlier in the calculation.
Larger POMDPs require approximation techniques discussed
below, including more compact approximate value function
representations and point-based value iteration techniques,
which break up the global Bellman update into smaller focused
updates.
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Exact value iteration

Exact value iteration (cont’d)
Websites about POMDP exact value iteration algorithms:

1 http://www.pomdp.org/pomdp/index.shtml
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Point-based value iteration
The Witness algorithm computes an exact Bellman update
using a series of pointbased updates at carefully selected
points. On the other hand, if we are willing to accept some
approximation error in the Bellman update, we can get away
with updating fewer beliefs and selecting them less carefully.
This is the key idea behind point-based value iteration
algorithms.
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Point-based value iteration (cont’d)
The first algorithms in this class, Cheng’s Point-Based Dynamic
Programming (Cheng, 1988) and Zhang’s Point-Based Value
Iteration (Zhang and Zhang, 2001), maintain their value
function in the form of a set of α vectors and, associated with
each vector, a witness belief where the vector dominates all
other vectors. They interleave many (cheap) point-based
updates at the witness points with occasional (very expensive)
exact Bellman updates that generate new α vectors and
witness points. The algorithms differ mainly in their process for
selecting witness points.
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Point-based value iteration (cont’d)
Pineau’s Point-Based Value Iteration (PBVI) (Pineau et al.,
2003b, 2006) is perhaps the most widely used point-based
algorithm. PBVI selects a finite set B̃ of beliefs and performs
point-based updates on all points of B̃ in synchronous batches
until a convergence condition is reached, then uses a heuristic
to expand B̃ and continues the process. They show that each
batch update approximates the Bellman update and repeated
batch updates converge to an approximation of V ∗ whose error
is related to the sample spacing of B̃. In extensions of this
work, they improved the heuristic for selecting new beliefs
(Pineau and Gordon, 2005) and improved update efficiency by
storing witness points in a metric tree (Pineau et al., 2003a).
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Point-based value iteration (cont’d)
The PERSEUS algorithm (Spaan and Vlassis, 2005) uses
batch updates that are slightly weaker but considerably faster
than those of PBVI. During each update, PERSEUS backs up
randomly sampled points from B̃, stopping when all points of B̃
have higher values than they did according to the previous
value function. Since a single α vector often improves the value
of several points, the batch usually requires many fewer than
|B̃| point-based updates.
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Point-based value iteration (cont’d)
Websites about POMDP point-based value iteration algorithms:

1 The Symbolic Perseus POMDP Solver (MATLAB/Java source code),
written by Pascal Poupart:
http://www.cs.uwaterloo.ca/˜ppoupart/index.html

2 The Perseus POMDP Solver (MATLAB source code), written by Matthijs
Spaan:
http://staff.science.uva.nl/˜mtjspaan/software/approx/
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Heuristic search
Heuristic search played a role in many of the POMDP solution
algorithms already discussed; this section is specifically
concerned with heuristic search techniques for selecting
POMDP beliefs to update.
The first example of this technique is the RTDP-BEL algorithm
(Geffner and Bonet, 1998), based on the Real-Time Dynamic
Programming (RTDP) algorithm for MDPs (Barto et al., 1995).
RTDP-BEL is a straightforward extension of RTDP to POMDPs
represented as belief-MDPs, using a grid-based value function
approximation.
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Heuristic search (cont’d)
The same authors later developed improved algorithms to
address some of RTDP’s limitations. Labeled RTDP labels
states once it knows from tracking residuals that they have
approximately optimal values; labeled states can be skipped in
later trials (Bonet and Geffner, 2003b). The Heuristic Dynamic
Programming algorithm also labels finished states, but often
more efficiently, and it fits better into a broad framework of
find-and-revise algorithms that applies across many types of
problems (Bonet and Geffner, 2003a). Bonet and Geffner
applied these algorithms only to MDPs, but they can be
generalized to POMDPs in the same fashion as RTDP.
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Heuristic search (cont’d)
The Bounded RTDP (BRTDP) algorithm (McMahan et al., 2005)
is another MDP heuristic search algorithm based on RTDP.
More recently, Shani et al. have modified a number of
point-based value iteration algorithms to use prioritized
asynchronous updates similar to HSVI algorithm (Smith and
Simmons, 2004), and have developed several novel heuristics
for selecting good belief points (Shani et al., 2006, 2007; Virin
et al., 2007).
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Heuristic search (cont’d)
Websites about POMDP heuristic search value iteration
algorithms:

1 ZMDP Software for POMDP and MDP Planning, written by Trey Smith:
http://www.cs.cmu.edu/˜trey/zmdp/
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Decentralized POMDPs
Recently, there has been growing interest in multi-agent
systems. The partially observable stochastic game (POSG)
framework models planning for multiple agents with different
information resources; the agents may or not cooperate with
each other (Hansen et al., 2004). A decentralized POMDP
(DEC-POMDP) is a special type of POSG in which the agents
are assumed to be purely cooperative, but still have limited
ability to share information (Bernstein et al., 2002).
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Decentralized POMDPs (cont’d)
Unlike single-agent POMDPs, DEC-POMDPs can be used to
decide when agents should communicate (Roth et al., 2006).
Solving general DEC-POMDPs is known to be intractable, but
approximate POMDP solution techniques such as BPI and
PERSEUS have been adapted to the DEC-POMDP framework
(Bernstein et al., 2005; Spaan et al., 2006).
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