
Users Manual

RoboCup Soccer Server
for Soccer Server Version 7.07 and later

Mao Chen†, Klaus Dorer,

Ehsan Foroughi, Fredrik Heintz,

ZhanXiang Huang†, Spiros Kapetanakis,

Kostas Kostiadis, Johan Kummeneje,

Jan Murray, Itsuki Noda,

Oliver Obst, Pat Riley,

Timo Steffens, Yi Wang† and

Xiang Yin†

February 11, 2003

† <ustc9811@sina.com>
<klaus.dorer@living-systems.de>

<foroughi@ce.sharif.edu>
<frehe@ida.liu.se>

<spiros@cs.york.ac.uk>
<kkosti@essex.ac.uk>

<johan.kummeneje@generalwireless.se>
<murray@uni-koblenz.de>

<noda@etl.go.jp>
<fruit@uni-koblenz.de>

<pfr+@cs.cmu.edu>
<timosteffens@gmx.de>



Copyright
�

2001 The RoboCup Federation. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation License”.



Acknowledgements

We are very grateful for the work of the authors from the previous versions of the manual
that could not help out on this version:

� David Andre at Berkeley, University of California, USA.

� Pascal Gugenberger at Humboldt University, Berlin, Germany.

� Marius Joldos at Technical University of Cluj-Napoca, Romania.

� Paul Arthur Navratil at University of Texas at Austin, USA.

� Peter Stone at University of Texas at Austin, USA.

� Tomoichi Takahashi at Chubu University, Japan.

� Tralvex Yeap at KRDL, Singapore.

� Emiel Corten at University of Amsterdam, Netherlands.

� Helmut Myritz at Humboldt University, Germany.

� Jukka Riekki at Oulu University, Finland.

Besides the authors, we would also like to thank Stefan Sablatnög from the University
of Ulm, Germany, and Mike Hewett from University of Texas at Austin, USA, for a
thorough proofreading of the soccermanual 4.00. We have also received a lot of good
suggestions from Erik Mattsson at the University of Karlskrona/Ronneby, Sweden.

We would not have been able to do this manual without the above mentioned people1.

This product includes software developed by the University of California, Berkeley
and its contributors – namely flex.

1The persons listed on the title page are the persons responsible for the different sections of the manual.

i



Acknowledgements

ii



Contents

Acknowledgements i

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Goals of RoboCup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Simulated League . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 What is the Soccerserver . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 History of the Soccer Server . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 History of the RoboCup Simulation League . . . . . . . . . . . . . 5

1.3.3 History of the Soccer Manual Effort . . . . . . . . . . . . . . . . . 8
1.4 About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Reader’s Guide to the Manual . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Overview 11
2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 The Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 The Logplayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 The Demo Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Rules of the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Rules Judged by the Automated Referee . . . . . . . . . . . . . . . 13
2.2.2 Rules Judged by the Human Referee . . . . . . . . . . . . . . . . . 15

3 Getting Started 17

3.1 The Homepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Getting and installing the server . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Full installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Configuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.3 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.4 Uninstalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Using the Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 How to stop the server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



Contents

3.7 Supported platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.1 Libtool and Sed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.2 ncurses and solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.3 old gcc (< 2.95.3) and sstream . . . . . . . . . . . . . . . . . . . . 26

3.9 The process of a match . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Soccer Server 29

4.1 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Client Command Protocol . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Client Sensor Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Aural Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Vision Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Body Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Movement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 Movement Noise Model . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Collision Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Action Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Catch Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.2 Dash Model (incl. stamina model) . . . . . . . . . . . . . . . . . . 44
4.5.3 Kick Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.4 Move Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.5 Say Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.6 Turn Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.7 TurnNeck Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Heterogeneous Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Referee Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7.1 Play Modes and referee messages . . . . . . . . . . . . . . . . . . . 53

4.8 The Soccer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8.1 Description of the simulation algorithm . . . . . . . . . . . . . . . 54
4.9 Using Soccerserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9.1 The Soccerserver Parameters . . . . . . . . . . . . . . . . . . . . . 55

5 The Soccer Monitor 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Communication from Server to Monitor . . . . . . . . . . . . . . . . . . . 59

5.3.1 Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Communication from Monitor to Server . . . . . . . . . . . . . . . . . . . 63

5.5 How to record and playback a game . . . . . . . . . . . . . . . . . . . . . 64

5.5.1 Version 1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

iv



Contents

5.5.2 Version 2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.3 Version 3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Settings and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 What’s New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Soccer Client 71

6.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Initialization and Reconnection . . . . . . . . . . . . . . . . . . . . 71

6.1.2 Control Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.3 Sensor Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 How to Create Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Sample Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Simple Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.3 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 The coach 85

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Distinction between trainer and online coach . . . . . . . . . . . . . . . . 85

7.3 Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Connecting with and without the soccerserver referee . . . . . . . 86

7.4 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4.1 Commands that can be used only by the trainer . . . . . . . . . . 86

7.4.2 Commands that can also be used by the online coach with certain
restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4.3 Commands that can be used by both trainer and online-coach . . . 91

7.4.4 Commands that can be used only by the online-coach . . . . . . . 92

7.5 Messages from the server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6 Online coach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.6.2 Communication with the players . . . . . . . . . . . . . . . . . . . 94

7.6.3 Changing player types . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7 The standard coach language . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7.2 Example Language Utterance . . . . . . . . . . . . . . . . . . . . . 96

7.7.3 Overview of the five message types . . . . . . . . . . . . . . . . . . 97

7.7.4 Defining rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.7.5 Semantics and syntax details of the components . . . . . . . . . . 99

7.7.6 Further resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.7.7 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Trainer commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Coach commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Shared Trainer and Online Coach Interactions with the Server . . . . . . . . . 111

8 References and Further Reading 113

v



Contents

8.1 General papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Doctoral Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Undergraduate and Master’s Theses . . . . . . . . . . . . . . . . . . . . . 114

8.4 Platforms to start building team upon . . . . . . . . . . . . . . . . . . . . 115

8.5 Education-related articles . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.6 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.7 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.8 Other supporting documents . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.9 Team Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.9.1 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.9.2 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.9.3 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.9.4 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.9.5 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.9.6 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A GNU Free Documentation License 117

A.1 Applicability and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Verbatim Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Copying in Quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.4 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.5 Combining Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.6 Collections of Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.7 Aggregation With Independent Works . . . . . . . . . . . . . . . . . . . . 122

A.8 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.9 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.10 Future Revisions of This License . . . . . . . . . . . . . . . . . . . . . . . 123

B Soccerserver 125

B.1 Soccerserver Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.2 Playmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C Soccermonitor 129

C.1 Monitor Communication Version 1 . . . . . . . . . . . . . . . . . . . . . . 129

C.1.1 Showinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.1.2 Messageinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.1.3 Drawinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.2 Monitor Communication Version 2 . . . . . . . . . . . . . . . . . . . . . . 131

C.2.1 Showinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.2.2 Messageinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2.3 Server Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.2.4 Player Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.2.5 Player Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vi



Contents

Index 136

vii



Contents

viii



1 Introduction

We are in the early days of RoboCup [7], with half a century to go before we can
“. . . build a team of robot soccer players, which can beat a human world cup champion
team” ([6], p. v). The challenge posed by the goal is enormous and inspires hundreds
of researchers yearly throughout the world to engage themselves and their students in
RoboCup. RoboCup has been used as a research challenge in parallel with a usage for
educational purposes, and to stimulate the interest of the public for robotics and artificial
intelligence (AI). Each year since 1997, researchers from different countries have gathered
to play the world cup. The event has drawn an increasing amount of interest from the
public, as robotics is still not commonplace.

The intention of this manual1 is to guide the developers of simulated league teams in
the beginning steps, and also serve as a reference manual for the experienced users.

1.1 Background

Mackworth [11] introduced the idea of using soccer-playing robots in research. Unfor-
tunately, the idea did not get the proper response until the idea was further developed
and adapted by Kitano, Asada, and Kuniyoshi, when proposing a Japanese research
programme, called Robot J-League2. During the autumn of 1993, several American re-
searchers took interest in the Robot J-League, and it thereafter changed name to the
Robot World Cup Initiative or RoboCup for short. RoboCup is sometimes referred to as
the RoboCup challenge or the RoboCup domain.

In 1995, Kitano et al. [7] proposed the first Robot World Cup Soccer Games and
Conferences to take place in 1997. The aim of RoboCup was to present a new stan-
dard problem for AI and robotics, somewhat jokingly described as the life of AI after
Deep Blue3. RoboCup differs from previous research in AI by focusing on a distributed
solution instead of a centralised solution, and by challenging researchers from not only
traditionally AI-related fields, but also researchers in the areas of robotics, sociology,
real-time mission critical systems, etc.

To co-ordinate the efforts of all researchers, the RoboCup Federation was formed.
The goal of RoboCup Federation is to promote RoboCup, for example by annually
arranging the world cup tournament. Members of the RoboCup Federation are all active
researchers in the field, and represent a number of universities and major companies. As

1Parts of this chapter is taken directly from [18]
2The J-League is the professional soccer league in Japan.
3In reference to Deep Blue and its games with Kasparov, see http://www.chess.ibm.com.

1



1 Introduction

the body of researchers is quite large and widespread, local committees are formed to
promote RoboCup-related events in their geographical area.

1.2 The Goals of RoboCup

The RoboCup Federation has set goals and a timetable for the research. Setting goals
and a timetable are means of pushing the state-of-the-art further, in conjunction with
formalised test-beds. In resemblance with John F. Kennedy’s national goal of “landing
a man on the moon and returning him safely to earth” ([4], p. 8276), the main accom-
plishment was not to land a man on the moon and returning him safely, but the overall
technological advancement. Therefore, the most important goal of RoboCup is to ad-
vance the overall technological level of society, and as a more pragmatic goal to achieve
the following:

By mid-21st century, a team of fully autonomous humanoid robot soccer
players shall win the soccer game, comply with the official rule of the FIFA4,
against the winner of the most recent World Cup [15].

There will be several technological advancements, even if the goal of the robotic soccer
team is not reached, starting with Team-Partitioned, Opaque-Transition Reinforcement
Learning (TPOT-RL) [19] which has found application in the domain of packet routing
in computer networks. TPOT-RL is a distributed learning method in domains where
“agents have limited information about environmental state transitions” ([19], p. 22).

In most RoboCup leagues, the teams consist of either robots or programs that co-
operate in order to defeat the opponent team. RoboCup Rescue and the commentator
exhibition diverge from the other RoboCup leagues. The goal of defeating an opponent
would raise ethical issues in RoboCup Rescue, since we cannot assign comparable utilities
to human lives and buildings. Hence, the focus in RoboCup Rescue is on the co-operative
efforts between heterogeneous agents. In the commentator exhibition, the goal is to
observe and comment.

Besides the commentator exhibition and RoboCup Rescue, the main body of the
RoboCup challenge consists of several leagues for soccer playing. However, as this manual
is about the simulated league we will only focus on it.

1.2.1 Simulated League

The RoboCup simulator league is based on the RoboCup simulator called the soccer
server [13], a physical soccer simulation system. All games are visualised by displaying
the field of the simulator by the soccer monitor on a computer screen. The soccer server
is written to support competition among multiple virtual soccer players in an uncertain
multi-agent environment, with real-time demands as well as semi-structured conditions.
One of the advantages of the soccer server is the abstraction made, which relieves the

4Fédération Internationale de Football Association (FIFA) defines the rules of soccer [27].

2



1.2 The Goals of RoboCup

researchers from having to handle robot problems such as object recognition [9], commu-
nications, and hardware issues, e.g., how to make a robot move. The abstraction enables
researchers to focus on higher level concepts such as co-operation and learning.

Since the soccer server provides a challenging environment, i.e., the intentions of the
players cannot mechanically be deduced, there is a need for a referee when playing
a match. The included artificial referee is only partially implemented and can detect
trivial situations, e.g., when a team scores. However, there are several hard-to-detect
situations in the soccer server, e.g., deadlocks, which brings the need for a human referee.
All participating teams are also obliged to play according to a gentlemen’s agreement,
e.g., not to use loopholes.

Since the first version of the soccer server was completed in 1995, there have been
four world cups and one pre-world cup event, not to mention all other RoboCup-related
events. The 1996 pre-RoboCup event [5] was held in Osaka, with only seven entrants
in the competition which ended with a Japanese victory by the team Ogalets from
Tokyo University. In Nagoya the following year, the first formal competition was held in
conjunction with the IJCAI’97 conference. The competition had 29 teams participating,
and the winner was AT Humboldt [2]. The RoboCup world cup of 1998 was played in
conjunction with the human world cup in Paris, and the winning team was CMUnited98
[29]. During the world cup, media was heavily covering the event, as it was public in a
museum in the suburbs of Paris. The year after, the world cup was held in conjunction
with IJCAI’99 in Stockholm, and the winners (once again) were CMUnited99 [30]. An
unchanged version of the champion team must participate, as a benchmark, in the next
world cup. The benchmarking teams have always been able to win their group, but only
in 2000 did the benchmark team advance further than the first game after group play.

1.2.2 What is the Soccerserver

Soccer Server is a system that enables autonomous agents consisting of programs written
in various languages to play a match of soccer (association football) against each other.

A match is carried out in a client/server style: A server, soccerserver, provides a
virtual field and simulates all movements of a ball and players. Each client controls
movements of one player. Communication between the server and each client is done
via UDP/IP sockets. Therefore users can use any kind of programing systems that have
UDP/IP facilities.

The soccerserver consists of 2 programs, soccerserver and soccermonitor. Soccer
Server is a server program that simulates movements of a ball and players, communicates
with clients, and controls a game according to rules. Soccermonitor is a program that
displays the virtual field from the soccerserver on the monitor using the X window
system. A number of soccermonitor programs can connect with one soccerserver, so
we can display field-windows on multiple displays.

A client connects with soccerserver by an UDP socket. Using the socket, the client
sends commands to control a player of the client and receives information from sensors of
the player. In other words, a client program is a brain of the player: The client receives
visual and auditory sensor information from the server, and sends control-commands to

3



1 Introduction

the server.

Each client can control only one player56. So a team consists of the same number of
clients as players. Communications between the clients must be done via soccerserver

using say and hear protocols. (See section 4.2.1.) One of the purposes of soccerserver is
evaluation of multi-agent systems, in which efficiency of communication between agents
is one of the criteria. Users must realize control of multiple clients by such restricted
communication.

1.3 History

In this section we will first describe the history of the soccerserver and thereafter the
history of the RoboCup Simulation League. To end the section we will also describe the
history of the manual effort.

1.3.1 History of the Soccer Server

The first, preliminary, original system of soccerserver was written in September of 1993
by Itsuki Noda, ETL. This system was built as a library module for demonstration of
a programming language called MWP, a kind of Prolog system that has multi-threads
and high level program manipulation. The module was a closed system and displayed a
field on a character display, that is VT100.

The first version (version 0) of the client-server style server was written in July of
1994 on a LISP system. The server shows the field on an X window system, but each
player was shown in an alphabet character. It used the TCP/IP protocol for connections
with clients. This LISP version of soccerserver became the original style of the current
soccerserver. Therefore, the current soccerserver uses S-expressions for the protocol
between clients and the server.

The LISP version of soccerserver was re-written in C++ in August of 1995 (version
1). This version was announced at the IJCAI workshop on Entertainment and AI/Alife
held in Montreal, Canada, August 1995.

The development of version 2 started January of 1996 in order to provide the official
server of preRoboCup-96 held at Osaka, Japan, November 1996. From this version, the
system is divided into two modules, soccerserver and soccerdisplay (currently, soccer-
monitor). Moreover, the feature of coach mode was introduced into the system. These
two features enabled researchers on machine learning to execute games automatically.
Peter Stone at Carnegie Mellon University joined the decision-making process for the
development of the soccerserver at this stage. For example, he created the configuration
files that were used at preRoboCup-96.

After preRoboCup-96, the development of the official server for the first RoboCup,
RoboCup-97 held at Nagoya, Japan, August 1997, started immediately, and the version

5Technically, it is easy to cheat the server. Therefore this is a gentleman’s agreement.
6In order to test various kinds of systems, we may permit a client to control multiple players if the

different control modules of players are separated logically from each other in the client.

4



1.3 History

3 was announced in February of 1997. Simon Ch’ng at RMIT joined decisions of regu-
lations of soccerserver from this stage. The following features were added into the new
version:

� logplayer

� information about movement of seen objects in visual information

� capacity of hearing messages

The development of version 4 started after RoboCup-97, and announced November
1997. From this version, the regulations are discussed on the mailing list organized by
Gal Kaminka. As a result, many contributers joined the development. Version 4 had
the following new features:

� more realistic stamina model

� goalie

� handling offside rule

� disabling players for evaluation

� facing direction of players in visual information

� sense body command

Version 4 was used in Japan Open 98, RoboCup-98 and Pacific Rim Series 98.
Version 5 was used in Japan Open 99, and will also be used in RoboCup-99 in Stock-

holm during the summer of 1999.
In Melbourne 2000, version 6 was used, and for the world cup in 2001 version 7 will

be used.

1.3.2 History of the RoboCup Simulation League

The RoboCup simulation league has had five main official events: preRoboCup-96,
RoboCup-97, RoboCup-98, RoboCup-99, and RoboCup 2000. Research results have
been reported extensively in the proceedings of the workshops and conferences asso-
ciated with these competitions. In this section, we focus mainly on the competitions
themselves.

preRoboCup-96

preRoboCup-96 was the first robotic soccer competition of any sort. It was held on
November 5–7, 1996 in Osaka, Japan [5]. In conjunction with the IROS-96 conference,
preRoboCup-96 was meant as an informal, small-scale competition to test the RoboCup
soccerserver in preparation for RoboCup-97. 5 of the 7 entrants were from the Tokyo
region. The other 2 were from Ch’ng at RMIT and Stone and Veloso from CMU.

The winning teams were entered by:

5



1 Introduction

1. Ogawara (Tokyo University)

2. Sekine (Tokyo Institute of Technology)

3. Inoue (Waseda University)

4. Stone and Veloso (Carnegie Mellon University)

In this tournament, team strategies were generally quite straightforward. Most of the
teams kept players in fixed locations, only moving them towards the ball when it was
nearby.

RoboCup-97

The RoboCup-97 simulator competition was the first formal simulated robotic soccer
competition. It was held on August 23–29, 1997 in Nagoya, Japan in conjunction with
the IJCAI-97 conference [6]. With 29 teams entering from all around the world, it was
a very successful tournament.

The winning teams were entered by:

1. Burkhard et al. (Humboldt University)

2. Andou (Tokyo Institute of Technology)

3. Tambe et al. (ISI/University of Southern California)

4. Stone and Veloso (Carnegie Mellon University)

In this competition, the champion team exhibited clearly superior low-level skills. One
of its main advantages in this regard was its ability to kick the ball harder than any other
team. Its players did so by kicking the ball around themselves, continually increasing its
velocity so that it ended up moving towards the goal faster than was imagined possible.
Since the soccerserver did not (at that time) enforce a maximum ball speed, a property
that was changed immediately after the competition, the ball could move arbitrarily fast,
making it almost impossible to stop. With this advantage at the low-level behavior level,
no team, regardless of how strategically sophisticated, was able to defeat the eventual
champion.

At RoboCup-97, the RoboCup scientific challenge award was introduced. Its purpose
is to recognize scientific research results regardless of performance in the competitions.
The 1997 award went to Sean Luke [10] of the University of Maryland ”for demonstrating
the utility of evolutionary approach by co-evolving soccer teams in the simulator league.”

RoboCup-98

The second international RoboCup championship, RoboCup-98, was held on July 2–9,
1998 in Paris, France [1]. It was held in conjunction with the ICMAS-98 conference.

The winning teams were entered by:

6



1.3 History

1. Stone et al. (Carnegie Mellon University)

2. Burkhard et al. (Humboldt University)

3. Corten and Rondema (University of Amsterdam)

4. Tambe et al. (ISI/University of Southern California)

Unlike in the previous year’s competition, there was no team that exhibited a clear
superiority in terms of low-level agent skills. Games among the top three teams were all
quite closely contested with the differences being most noticeable at the strategic, team
levels.

One interesting result at this competition was that the previous year’s champion team
competed with minimal modifications and finished roughly in the middle of the final
standings. Thus, there was evidence that as a whole, the field of entries was much
stronger than during the previous year: roughly half the teams could beat the previous
champion.

The 1998 scientific challenge award was shared by Electro Technical Laboratory
(ETL), Sony Computer Science Laboratories, Inc., and German Research Center for
Artificial Intelligence GmbH (DFKI) for ”development of fully automatic commentator
systems for RoboCup simulator league.”

To encourage the transfer of results from RoboCup to the scientific community at
large, RoboCup-98 was the first to host the Multi-Agent Scientific Evaluation Session.
13 different teams participated in the session, in which their adaptability to loss of team-
members was evaluated comparatively. Each team was played against the same fixed
opponent (the 1997 winner, AT Humboldt’97) four half-games under official RoboCup
rules. The first half-game (phase A) served as a base-line. In the other three half-
games (phases B-D), 3 players were disabled incrementally: A randomly chosen player,
a player chosen by the representative of the fixed opponent to maximize ”damage” to
the evaluated team, and the goalie. The idea is that a more adaptive team would be
able to respond better to these.

Very early on, even during the session itself, it became clear that while in fact most
participants agreed intuitively with the evaluation protocol, it wasn’t clear how to quan-
titatively, or even qualitatively, analyse the data. The most obvious measure of the
goal-difference at the end of each half may not be sufficient: some teams seem to do bet-
ter with less players, some do worse. Performance, as measured by the goal-difference,
really varied not only from team to team, but also for the same team between phases.
The evaluation methodology itself and analysis of the results became open research prob-
lems in themselves. To facilitate this line of research, the data from the evaluation was
made public at: http://www.isi.edu/~galk/Eval/

RoboCup-99

The third international RoboCup championship, RoboCup-99, was held in late July
and early August, 1999 in Stockholm, Sweden [3]. It was held in conjunction with the
IJCAI-99 conference.

7



1 Introduction

RoboCup 2000

The fourth international RoboCup championship, RoboCup 2000, was held in early
September, 2000 in Melbourne, Australia [16]. It was held in conjunction with the
PRICAI-2000 conference.

1.3.3 History of the Soccer Manual Effort

The first versions of the manual were written by Itsuki Noda, while developing the
soccerserver, and around version 3.00 there were several requests on an updated manual,
to better correspond to the server as well as enable newcomers to more easily participate
in the RoboCup World Cup Initiative. In the fall of 1998 Peter Stone initiated the Soccer
Manual Effort, over which Johan Kummeneje took responsibility to organize and as a
result the Soccer Server Manual version 4.0 was released on the 1st of November 1998.

In 1999, the manual for the soccerserver version 5.0 was released. Unfortunately the
manual lost part of its pace, and there was no release of the manual for soccerserver
version 6.0.

Since 1999, the soccerserver has changed major version to 7 and is continuously de-
veloped. Therefore the Soccer Manual Effort has developed a new version, which you
are currently reading.

1.4 About This Manual

This manual is the joint effort of the authors from a diverse range of universities and
organizations, which build upon the original work of Itsuki Noda.
If there are errors, inconsistencies, or oddities, please notify johank@dsv.su.se or
fruit@uni-koblenz.de with the location of the error and a suggestion of how it should be
corrected.

We are always looking for anyone who has an idea on how to improve the manual,
as well as proofread or (re)write a section of the manual. If you have any ideas, or feel
that you can contribute with anything to the SoccerServer Manual Effort please mail
johank@dsv.su.se or fruit@uni-koblenz.de.

The latest manual can be downloaded at http://www.dsv.su.se/~johank/RoboCup/
manual.

1.5 Reader’s Guide to the Manual

The thesis is written for a wide range of readers, and therefore the chapters are not
equally important to all readers. We shortly describe the remaining chapters to give an
overview of the thesis.

Chapter 2 introduces the concepts of the simulated league and will help the newcomer
to get to terms with the different parts.

Chapter 3 helps the beginners to start compiling and running the software.
Chapter 4 describes the soccerserver.

8



1.5 Reader’s Guide to the Manual

Chapter 5 describes the soccermonitor.
Chapter 6 describes the soccerclient and how to create one.
Chapter 7 describes the coachclient.
Chapter 8 suggests some further reading.

9



1 Introduction

10



2 Overview

2.1 Getting Started

This section is designed to give you a quick introduction to the main components of the
RoboCup simulator. For each of these components you will find detailed information
(i.e. configuration parameters, run-time options, etc.) later on in this manual.

2.1.1 The Server

The server is a system that enables various teams to compete in a game of soccer. Since
the match is carried out in a client-server style, there are no restrictions as to how
teams are built. The only requirement is that the tools used to develop a team support
client-server communication via UDP/IP. This is due to the fact that all communication
between the server and each client is done via UDP/IP sockets. Each client is a separate
process and connects to the server through a specified port. After a player connects to
the server, all messages are transferred through this port. A team can have up to 12
clients, i.e. 11 players (10 fielders + 1 goalie) and a coach. The players send requests to
the server regarding the actions they want to perform (e.g. kick the ball, turn, run, etc.).
The server receives those messages, handles the requests, and updates the environment
accordingly. In addition, the server provides all players with sensory information (e.g.
visual data regarding the position of objects on the field, or data about the player’s
ressources like stamina or speed). It is important to mention that the server is a real-
time system working with discrete time intervals (or cycles). Each cycle has a specified
duration, and actions that need to be executed in a given cycle, must arrive at the server
during the right interval. Therefore, slow performance of a player that results in missing
action opportunities has a major impact on the performance of the team as a whole. A
detailed description of the server can be found in Chapter 4.

2.1.2 The Monitor

The Soccer Monitor is a visualisation tool that allows people to see what is happen-
ing within the server during a game. Currently the monitor comes in two flavors, the
rcssmonitor and the rcssmonitor classic. The information shown on both moni-
tors include the score, team names, and the positions of all the players and the ball.
They also provide simple interfaces to the server. For example, when both teams have
connected, the ”Kick-Off” button on the monitor allows a human referee to start the

11



2 Overview

game. The rcssmonitor, which is based on the frameview by Artur Merke, extends the
functionality of the classic monitor by several features.

� It is possible to zoom into areas of the field. This is especially useful for debugging
purposes.

� The current positions and velocities of all players and the ball can be printed to
the console at any time.

� A variety of information can be shown on the monitor, e.g. a player’s view cone,
stamina or (in the case of heterogeneous players) player type.

� Players and the ball can be moved around with the mouse.

As you will discover later on, to run a game on the server, a monitor is not required.
However, if needed, a number of monitors can be connected to the server at the same
time (for example if you want to show the same game at different terminals). For further
details on the monitor please have a look at Chapter 5.

2.1.3 The Logplayer

The logplayer can be thought of as a video player. It is a tool that is used to replay
matches. When running the server, certain options can be used that will cause the server
to store all the data for a given match on the hard drive. (Pretty much like pressing
the record button on your video). Then, the program rcsslogplayer combined with a
monitor can be used to replay that game as many times as needed. This is quite useful
for doing team analysis and discovering the strong or weak points of a team. Much like a
video player, the logplayer is equipped with play, stop, fast forward and rewind buttons.
Also the logplayer allows you to jump to a particular cycle in a game (for example if you
only want to see the goals). Finally the logplayer allows you to edit existing recordings,
i.e. you can save interesting scenes from a match (or several matches) to another logfile
and thus create a presentation easily.

The logplayer can be controlled via a small GUI or a command line interface. In
addition commands can be read from a file, which adds limited scripting capabilities to
the logplayer.

2.1.4 The Demo Client

Bundled with the RoboCup Soccer Simulatoris a program called rcssclient, which
implements a very primitive textbased client for the simulation. The purpose of this
program is to give you a first idea of how the whole affair works.

When rcssclient is started, it connects to the server. You are presented with a
simple ncurses-based interface. You can then enter commands that are executed by the
server. Any information that is received by the client will be shown in a different section
of the screen according to its type (visual , sense body or other). By entering commands
and see what happens you can get a first idea of the way things work in the simulation.

12



2.2 The Rules of the Game

Even if you are not a newbie any more, the program is handy for simple tests, e.g.
getting a grip on new commands added to the simulation.

2.2 The Rules of the Game

During a game, a number of rules are enforced either by the automated referee within
the server, or by a human referee. The aim of this section is to describe how these rules
work, and how they affect the game.

2.2.1 Rules Judged by the Automated Referee

Kick-Off

Just before a kick off (either before a half time starts, or after a goal), all players must be
in their own half. To allow for this to happen, after a goal is scored, the referee suspends
the match for an interval of 5 seconds. During this interval, players can use the move
command to teleport to a position within its own side, rather than run to this position,
which is much slower and consumes stamina. If a player remains in the opponent half
after the 5-second interval has expired or tries to teleport there during the interval, the
referee moves the player to a random position within their own half.

Goal

When a team scores, the referee performs a number of tasks. Initially, it announces the
goal by broadcasting a message to all players. It also updates the score, moves the ball
to the centre mark, and changes the play-mode to kick off x (where x is either left or
right). Finally, it suspends the match for 5 seconds allowing players to move back to
their own half (as described above in the ”Kick-Off” section).

Out of Field

When the ball goes out of the field, the referee moves the ball to a proper position (a
touchline, corner or goal-area) and changes the play-mode to kick in, corner kick, or
goal kick. In the case of a corner kick, the referee places the ball at (1m, 1m) inside the
appropriate corner of the field.

Player Clearance

When the play-mode is kick off, free kick, kick in, or corner kick, the referee removes all
defending players located within a circle centred on the ball. The radius of this circle is
a parameter within the server (normally 9.15 meters). The removed players are placed
on the perimeter of that circle. When the play-mode is offside, all offending players are
moved back to a non-offside position. Offending players in this case are all players in the
offside area and all players inside a circle with radius 9.15 meters from the ball. When
the play-mode is goal kick, all offending players are moved outside the penalty area. The

13



2 Overview

offending players cannot re-enter the penalty area while the goal kick takes place. The
play-mode changes to play on immediately after the ball goes outside the penalty area.

Play-Mode Control

When the play-mode is kick off, free kick, kick in, or corner kick, the referee changes the
play-mode to play on immediately after the ball starts moving through a kick command.

Offside

A player is marked offside, if it is
– in the opponent half of the field,
– closer to the opponent goal than at least two defending players,
– closer to the opponent goal than the ball,
– closer to the ball than 2.5 meters (this can be changed with the server parameter
offside active area size).

Backpasses

Just like in real soccer games, the goalie is not allowed to catch a ball that was passed
to him by a teammate. If this happens, the referee calls a back pass l or back pass r and
assigns a free kick to the opposing team. As such a back pass can only happen within
the penalty area, the ball is placed on the corner of the penalty area that is closest to
the position the goalie tried to catch. Note, that it is perfectly legal to pass the ball to
the goalie if the goalie does not try to catch the ball.

Free Kick Faults

When taking a free kick, corner kick, goalie free kick, or kick in, a player is not allowed
to pass the ball to itself. If a player kicks the ball again after performing one of those
free kicks, the referee calls a free kick fault l or free kick fault r and the oppsing team is
awarded a free kick.

As a player may have to kick the ball more than once in order to accelerate it to the
desired speed, a free kick fault is only called if the player taking the free kick

1. is the first player to kick the ball again, and

2. the player has moved (= dashed) between the kicks.

So issuing command sequences like kick–kick–dash or kick–turn–kick is perfectly
legal. The sequence kick–dash–kick, on the other hand, results in a free kick fault.

14



2.2 The Rules of the Game

Half-Time and Time-Up

The referee suspends the match when the first or the second half finishes. The default
length for each half is 3000 simulation cycles (about 5 minutes). If the match is drawn
after the second half, the match is extended. Extra time continues until a goal is scored.
The team that scores the first goal in extra time wins the game. This is also known as
the “golden goal” rule or “sudden death”.

2.2.2 Rules Judged by the Human Referee

Fouls like “obstruction” are difficult to judge automatically because they concern play-
ers’ intentions. To resolve such situations, the server provides an interface for human-
intervention. This way, a human-referee can suspend the match and give free kicks
to either of the teams. The following are the guidelines that were agreed prior to the
RoboCup 2000 competition, but they have been used since then.

� Surrounding the ball

� Blocking the goal with too many players

� Not putting the ball into play after a given number of cycles.
By now this rule is handled by the automatic referee, as well. If a team fails to
put the ball back into play for drop ball time cycles, a drop ball is issued by the
referee. However, if a team repeatedly fails to put the ball into play, the human
referee may drop the ball prematurely.

� Intentionally blocking the movement of other players

� Abusing the goalie catch command (the goalie may not repeatedly kick and catch
the ball, as this provides a safe way to move the ball anywhere within the penalty
area).

� Flooding the Server with Messages
A player should not send more than 3 or 4 commands per simulation cycle to the
soccer server. Abuse may be checked if the server is jammed, or upon request after
a game.

� Inappropriate Behaviour
If a player is observed to interfere with the match in an inappropriate way, the
human-referee can suspend the match and give a free kick to the opposite team.

15



2 Overview

16



3 Getting Started

This section contains all the information necessary to get the RoboCup Soccer Simu-
lator source files and to install the software. Since you are reading this manual, you
probably already know where to find the RoboCup Soccer Simulator related software
and documentation. But we will tell you just in case. :-)

3.1 The Homepage

The official homepage of the RoboCup Soccer Simulator can be found at
http://sserver.sourceforge.net/. This page contains (links to) useful information
about RoboCup in general and the RoboCup Soccer Simulator.

This is a short description of what hides behind the buttons:

Home: The RoboCup Soccer Simulator homepage.

SSIL: The Simulated Soccer Internet League is a continuous tournament hosted at the
University of Koblenz. On a slightly modified (slowed down) server the participat-
ing teams have a series of tournaments When a tournament is finished, the next
one is started.

The SSIL provides continuous feedback to the developers of a team and thus of-
fers valuable help in improving the abilities of the soccer playing agents. So the
emphasis in this event is not laid on winning tournaments or being the best team,
but on testing ideas and collecting data for.

Once you have your own team, you might want to join in. In this case just submit
a request by following the link New User Request on the SSIL page.

Clients: Since the RoboCup World Cup 2002 it is compulsory for participants to release
a binary version of their team. Many teams have released binaries and sometimes
(parts of) their source code even before that. The client repository collects the
released teams for download. You should definitely have a look at the page if you
need an opponent to test your team against.

Libraries: This page contains some useful libraries for working with the simulator. Usu-
ally such a library is for handling the lower levels of a team, e.g. the connection and
synchronization with the server, a world model, and some basic skills like dribbling
or passing .

17



3 Getting Started

Downloads: This page very briefly explains the different downloadable packages and
leads you to the actual download page. You may want to read this page in order to
find out more about the different packages you can download and install. However,
to get started quickly, you better follow the instructions in Section 3.3.

Events: A list of past and upcoming local and international RoboCup events.

Links: A collection of links to sites related to the RoboCup initiative.

About us: This page shows the organizational structure of the RoboCup Federation in
general. More detailed information are available about the RoboCup Simulation
League and the RoboCup Soccer Simulator Maintainance Committee.

RoboCup: The official homepage of the RoboCup Federation. On this page you can get
all information about RoboCup, the different leagues, its aims and history.

SIGs: A listing of the RoboCup Special Interest Groups. As the RobCup has a scien-
tific background, a certain scientific infrastructure exists in addition to the annual
competitions. In the RoboCup special interest groups scientists focus on certain
research aspects.

Old Site: This link takes you to the old RoboCup simulation site. It dates back to the
days before the RoboCup Soccer Simulator was hosted by SourceForge. It was not
even called RoboCup Soccer Simulator but Soccer Server in these days.

The rest of the page contains the latest news about releases and several shortcuts to
project management tools provided by SourceForge.

Finally, if you would like to make a donation to the RoboCup Soccer Simulator Main-
tenance Group, click on the PayPal button at the bottom of the page.

3.2 Getting and installing the server

The procedure shown was performed on a computer running SuSE 7.3-GNU/Linux
2.4.10-4GB (check your version with uname -sr) with gcc 2.95.3 and gcc 3.2 (check
your version with which g++) but any reasonably up-to-date installation should work.
In the commands shown below, -> is supposed to be the command-line prompt.

Get source files or RPMs from the Soccer Server site:

� http://sserver.sf.net/

This is done by clicking the Released Files link and getting the tar.gz files or the .rpm
files for the version you are after.

At the time of this writing (Jan-22-2003) the latest version is 9.2.2 and will be used
in the example below. Please substitute 9.2.2 for the latest version available.

The entire simulator can be downloaded as the rcsoccersim-9.2.2.tar.gz file, or you can
download each module individually.

18



3.3 Quick Start

� rcssbase is base code used by the other modules.

� rcssserver performs the actual simulation.

� rcsslogplayer allows you to replay logs (*.rcg files) created by rcsserver.

� rcssmonitor and rcssmonitorclassic allow you to watch game in progress or
game being replayed by the log player.

If you have downloaded rcsoccersim-*.tar.gz, then first extract the source files by
running:

-> tar zxvf rcsoccersim-9.2.2.tar.gz

A directory rcsoccersim-* is created. Now, change the working directory to
rcsoccersim-*. This directory contains the following files:

-> cd rcsoccersim-9.2.2

-> ls -a

. Makefile.in install-sh rcsslogplayer

.. NEWS mergeCL.awk rcssmonitor

AUTHORS NEWS.base missing rcssmonitor_classic

BUGS README mkinstalldirs rcssserver

COPYING aclocal.m4 rcsoccersim rel.awk

ChangeLog configure rcsoccersim-9.2.2.spec spec.tmpl

ChangeLog.base configure.in rcssbase

Makefile.am date.awk rcsslogplay

Always read the README file first:

-> more README

The COPYING file contains details about the license under which you may use and
modify the software. Please, make sure you read it in your own time.

-> more COPYING

3.3 Quick Start

From the rcsoccersim-* directory execute:

-> ./configure

-> make

This will build the necessary binaries to get you up and running.
rcsoccersim-*/rcssserver/src/rcssserver is the binary for the simulator server.

The simulator server manages the actual simulation and communicates with client
programs that control the simulated robots. A sample client can be found at
rcsoccersim-*/rcssserver/src/rcssclient.

19



3 Getting Started

To see what is actually happening in the simulator, you will need to start a simulator
monitor, which can be found at rcsoccersim-*/rcssmonitor/src/rcssmonitor.

To playback games that you have recorded or downloaded, you will need to start
the log player, rcsoccersim-*/rcsslogplayer/src/rcsslogplayer. The log player
will control what part of the game you see, but you will need to start a monitor (like
rcssmonitor) to see the actual playback.

3.4 Full installation

3.4.1 Configuring

Before you can build the RoboCup Soccer Simulator you will need to run the configure
script located in the root of the distribution directory.

The default configuration will set up to install the simulator components in the fol-
lowing locations:

/usr/local/bin for the executables
/usr/local/include for the headers
/usr/local/lib for the libraries

You may need administrator privileges to install the simulator into the default location.
This location can be modified by using configure’s --prefix=DIR and related options.
See configure --help for more details.

3.4.2 Building

Once you have successfully configured the simulator, simply run make to build the
sources.

3.4.3 Installing

When you have completed building the simulator, its components can be installed into
their default locations or the locations specified during configuration by running make

install. Depending on where you are installing the simulator, you may need special
permissions.

3.4.4 Uninstalling

The simulator can also be easily removed by entering the distribution directory and
running make uninstall. This will remove all the files that where installed, but not
any directories that were created during the installation process.

3.5 Using the Simulator

To start the server either type

./rcssserver

20



3.5 Using the Simulator

from the directory containing the executable or

rcssserver

if you installed the executables in your PATH.

rcssserver will look in your home directory for the configuration files:
.rcssserver-server.conf

.rcssserver-player.conf

.rcssserver-landmark.xml

If these files do not exist they will be created and populated with default values.

You can specify other locations for the configuration files by using the -sfile and
-pfile options to rcssserver. If the files you specify do not exist, they will be created
and populated with default values.

You can then see what’s happening in the simulator by using

./rcssmonitor or rcssmonitor as above.

If you installed the executables in your PATH, you can start both the server and the
monitor by using the rcsoccersim script which would have also been installed in your
PATH. This script will start the server and the monitor and automatically stop the
server when you close the monitor.

In order to actually start a match on the Soccer Server, the user must connect some
clients to the server (maximum of 11 per side plus coaches). When these clients are
ready, the user can click the Kick Off button on the Soccer Monitor to start the game.
It is likely that you have not yet programmed your own clients, in which case, you can
read section 3.9 for instructions how to set up a whole match with the available teams
that other RoboCuppers have contributed.

Also, there is a sample client rcssclient included with every distribution of the
Soccer Server. It has either an ncurses interface or a command line interface (CLI) if
ncurses is not available, or it it’s started with the -nogui option.

Running rcssclient attempts to connect to the server using default parameters
(host=localhost, port=6000). Of course, these server parameters can be changed us-
ing the arguments that Soccer Server accepts when it is started. When the client is
started, you need to initialise its connection to the server. This is done by manually
typing in an init command and hitting enter. So, to initialise the connection :

(init MyTeam (version 9))

You will notice that one of the two teams is now named “MyTeam” and one of the
players that are standing by the side-line is active. This player corresponds to the client
you’ve just initialised. Also, notice the information that the client writes on the terminal.
This is what the client receives from the server.

In the following text (which has line breaks added for clarity), the first eleven lines
correspond to the initialisation1 and the other data is the sensor information that the
server sends to this client :

1The response from the server means that the client plays for the left side, has the number one and
the play mode is before kick off. The other lines correspond the the current server parameters and
player types

21



3 Getting Started

(init MyTeam (version 9))

(init l 2 before_kick_off)

(server_param (catch_ban_cycle 5)(clang_advice_win 1)

(clang_define_win 1)(clang_del_win 1)(clang_info_win 1)

(clang_mess_delay 50)(clang_mess_per_cycle 1)

(clang_meta_win 1)(clang_rule_win 1)(clang_win_size 300)

(coach_port 6001)(connect_wait 300)(drop_ball_time 0)

(freeform_send_period 20)(freeform_wait_period 600)

(game_log_compression 0)(game_log_version 3)

(game_over_wait 100)(goalie_max_moves 2)(half_time -10)

(hear_decay 1)(hear_inc 1)(hear_max 1)(keepaway_start -1)

(kick_off_wait 100)(max_goal_kicks 3)(olcoach_port 6002)

(point_to_ban 5)(point_to_duration 20)(port 6000)

(recv_step 10)(say_coach_cnt_max 128)

(say_coach_msg_size 128)(say_msg_size 10)

(send_step 150)(send_vi_step 100)(sense_body_step 100)

(simulator_step 100)(slow_down_factor 1)(start_goal_l 0)

(start_goal_r 0)(synch_micro_sleep 1)(synch_offset 60)

(tackle_cycles 10)(text_log_compression 0)

(game_log_dir "/home/thoward/data")

(game_log_fixed_name "rcssserver")keepaway_log_dir "./")

(keepaway_log_fixed_name "rcssserver")

(landmark_file "~/.rcssserver-landmark.xml")

(log_date_format "%Y%m%d%H%M-")(team_l_start "")

(team_r_start "")(text_log_dir "/home/thoward/data")

(text_log_fixed_name "rcssserver")(coach 0)

(coach_w_referee 1)(old_coach_hear 0)(wind_none 0)

(wind_random 0)(auto_mode 0)(back_passes 1)

(forbid_kick_off_offside 1)(free_kick_faults 1)

(fullstate_l 0)(fullstate_r 0)(game_log_dated 1)

(game_log_fixed 1)(game_logging 1)(keepaway 0)

(keepaway_log_dated 1)(keepaway_log_fixed 0)

(keepaway_logging 1)(log_times 0)(profile 0)

(proper_goal_kicks 0)(record_messages 0)(send_comms 0)

(synch_mode 0)(team_actuator_noise 0)(text_log_dated 1)

(text_log_fixed 1)(text_logging 1)(use_offside 1)

(verbose 0)(audio_cut_dist 50)(ball_accel_max 2.7)

(ball_decay 0.94)(ball_rand 0.05)(ball_size 0.085)

(ball_speed_max 2.7)(ball_weight 0.2)(catch_probability 1)

(catchable_area_l 2)(catchable_area_w 1)(ckick_margin 1)

(control_radius 2)(dash_power_rate 0.006)(effort_dec 0.005)

(effort_dec_thr 0.3)(effort_inc 0.01)(effort_inc_thr 0.6)

(effort_init 0)(effort_min 0.6)(goal_width 14.02)

(inertia_moment 5)(keepaway_length 20)(keepaway_width 20)

(kick_power_rate 0.027)(kick_rand 0)(kick_rand_factor_l 1)

(kick_rand_factor_r 1)(kickable_margin 0.7)(maxmoment 180)

(maxneckang 90)(maxneckmoment 180)(maxpower 100)

(minmoment -180)(minneckang -90)(minneckmoment -180)

(minpower -100)(offside_active_area_size 2.5)

22



3.5 Using the Simulator

(offside_kick_margin 9.15)(player_accel_max 1)

(player_decay 0.4)(player_rand 0.1)(player_size 0.3)

(player_speed_max 1)(player_weight 60)(prand_factor_l 1)

(prand_factor_r 1)(quantize_step 0.1)(quantize_step_l 0.01)

(recover_dec 0.002)(recover_dec_thr 0.3)(recover_min 0.5)

(slowness_on_top_for_left_team 1)

(slowness_on_top_for_right_team 1)(stamina_inc_max 45)

(stamina_max 4000)(stopped_ball_vel 0.01)

(tackle_back_dist 0.5)(tackle_dist 2.5)(tackle_exponent 6)

(tackle_power_rate 0.027)(tackle_width 1.25)

(visible_angle 90)(visible_distance 3)(wind_ang 0)

(wind_dir 0)(wind_force 0)(wind_rand 0))

(player_param (player_types 7)(pt_max 3)(random_seed -1)

(subs_max 3)(dash_power_rate_delta_max 0)

(dash_power_rate_delta_min 0)

(effort_max_delta_factor -0.002)

(effort_min_delta_factor -0.002)

(extra_stamina_delta_max 100)

(extra_stamina_delta_min 0)

(inertia_moment_delta_factor 25)

(kick_rand_delta_factor 0.5)

(kickable_margin_delta_max 0.2)

(kickable_margin_delta_min 0)

(new_dash_power_rate_delta_max 0.002)

(new_dash_power_rate_delta_min 0)

(new_stamina_inc_max_delta_factor -10000)

(player_decay_delta_max 0.2)

(player_decay_delta_min 0)

(player_size_delta_factor -100)

(player_speed_max_delta_max 0.2)

(player_speed_max_delta_min 0)

(stamina_inc_max_delta_factor 0))

(player_type (id 0)(player_speed_max 1)(stamina_inc_max 45)

(player_decay 0.4)(inertia_moment 5)(dash_power_rate 0.006)

(player_size 0.3)(kickable_margin 0.7)(kick_rand 0)

(extra_stamina 0)(effort_max 1)(effort_min 0.6))

(player_type (id 1)(player_speed_max 1.1956)(stamina_inc_max 30.06)

(player_decay 0.4554)(inertia_moment 6.385)(dash_power_rate 0.007494)

(player_size 0.3)(kickable_margin 0.829)(kick_rand 0.0645)

(extra_stamina 9.4)(effort_max 0.9812)(effort_min 0.5812))

(player_type (id 2)(player_speed_max 1.135)(stamina_inc_max 33.4)

(player_decay 0.4292)(inertia_moment 5.73)(dash_power_rate 0.00716)

(player_size 0.3)(kickable_margin 0.8198)(kick_rand 0.0599)

(extra_stamina 31.3)(effort_max 0.9374)(effort_min 0.5374))

(player_type (id 3)(player_speed_max 1.1964)(stamina_inc_max 31.24)

(player_decay 0.4664)(inertia_moment 6.66)(dash_power_rate 0.007376)

(player_size 0.3)(kickable_margin 0.88)(kick_rand 0.09)

(extra_stamina 47.1)(effort_max 0.9058)(effort_min 0.5058))

(player_type (id 4)(player_speed_max 1.151)(stamina_inc_max 37.8)

23



3 Getting Started

(player_decay 0.45)(inertia_moment 6.25)(dash_power_rate 0.00672)

(player_size 0.3)(kickable_margin 0.8838)(kick_rand 0.0919)

(extra_stamina 44.1)(effort_max 0.9118)(effort_min 0.5118))

(player_type (id 5)(player_speed_max 1.1544)(stamina_inc_max 34.68)

(player_decay 0.4352)(inertia_moment 5.88)(dash_power_rate 0.007032)

(player_size 0.3)(kickable_margin 0.8052)(kick_rand 0.0526)

(extra_stamina 47.1)(effort_max 0.9058)(effort_min 0.5058))

(player_type (id 6)(player_speed_max 1.193)(stamina_inc_max 36.7)

(player_decay 0.4738)(inertia_moment 6.845)(dash_power_rate 0.00683)

(player_size 0.3)(kickable_margin 0.885)(kick_rand 0.0925)

(extra_stamina 92)(effort_max 0.816)(effort_min 0.416))

(sense_body 0 (view_mode high normal) (stamina 4000 1) (speed 0 0)

(head_angle 0) (kick 0) (dash 0) (turn 0) (say 0) (turn_neck 0)

(catch 0) (move 0) (change_view 0) (arm (movable 0) (expires 0)

(target 0 0) (count 0)) (focus (target none) (count 0)) (tackle

(expires 0) (count 0)))

(see 0 ((f c t) 6.7 27 0 0) ((f r t) 58.6 3) ((f g r b) 73 37)

((g r) 69.4 32) ((f g r t) 66 27) ((f p r c) 55.7 41)

((f p r t) 45.2 22) ((f t 0) 6.3 -18 0 0)

((f t r 10) 16.1 -7 0 0) ((f t r 20) 26 -4 0 0)

((f t r 30) 36.2 -3) ((f t r 40) 46.1 -2)

((f t r 50) 56.3 -2) ((f r 0) 73.7 30) ((f r t 10) 68.7 23)

((f r t 20) 66 15) ((f r t 30) 64.1 6) ((f r b 10) 79 37)

((f r b 20) 85.6 42))

(sense_body 0 (view_mode high normal) (stamina 4000 1) (speed 0 0)

(head_angle 0) (kick 0) (dash 0) (turn 0) (say 0) (turn_neck 0)

(catch 0) (move 0) (change_view 0) (arm (movable 0) (expires 0)

(target 0 0) (count 0)) (focus (target none) (count 0)) (tackle

(expires 0) (count 0)))

(see 0 ((f c t) 6.7 27 0 0) ((f r t) 58.6 3) ((f g r b) 73 37)

((g r) 69.4 32) ((f g r t) 66 27) ((f p r c) 55.7 41)

((f p r t) 45.2 22) ((f t 0) 6.3 -18 0 0)

((f t r 10) 16.1 -7 0 0) ((f t r 20) 26 -4 0 0)

((f t r 30) 36.2 -3) ((f t r 40) 46.1 -2)

((f t r 50) 56.3 -2) ((f r 0) 73.7 30) ((f r t 10) 68.7 23)

((f r t 20) 66 15) ((f r t 30) 64.1 6) ((f r b 10) 79 37)

((f r b 20) 85.6 42))

...

You can still type commands (such as (move 0 0) or (turn 45)) that the player
will then send to the server. You should be able to see the result of these commands on
the Soccer Monitor window.

3.6 How to stop the server

The correct procedure for stopping the server is :

1. Stop all clients (players)

24



3.7 Supported platforms

2. Stop all Soccer Monitors by clicking on the Quit button

3. Hit ctrl-c at the terminal window where you started the Soccer Server in order
to terminate it

If you follow this procedure, you will not only stop all visible running processes but
also make sure that all those processes that may be running in the background (such as
the Soccer Server) are also stopped. The problem that arises when you don’t properly
shut down the Soccer Server is that you may not be able to start another process unless
you start it with different parameters.

Also, if you don’t stop the simulator with a ctrl-c, then the logfiles will no be closed
properly (only important if you are using compressed logging) and they will not be
renamed correctly.

NOTE: It is sometimes useful and convenient to terminate processes using their name.
Using the kill operating system command involves finding the process number of the
process you want to stop using the ps command. A simpler way to eradicate all processes
that have a specific name is by means of the killall command, for example: “killall
rcssserver” is sufficient to kill all processes with the name rcssserver.

3.7 Supported platforms

The Soccer Server supports quite a few unix style platforms but we haven’t actually
compiled a list. The simulator (grouped by version numbers) is known to work on the
following platforms 2:

� 9.2.2

– SuSE 7.3 with gcc 2.95.3 or 3.2 (Tom Howard)

– Windows 2000 with Cygwin with gcc 2.95.3 (Tom Howard)

– SuSE 8.1 with gcc 3.2 (Jan Murray)

– Debian 3.0 (woody) with gcc 2.95.4 (Jan Murray)

– SuSE 7.0 Linux with gcc 2.95.2 (Kernel 2.4.16) (Goetz Schwandtner)

� 9.1.5

– SuSE 8.1 with gcc 3.2 (Jan Murray)

– Debian 3.0 (woody) with gcc 2.95.4 (Jan Murray)

– SuSE 7.3 with gcc 2.95.3 or 3.2 (Tom Howard)

– Windows 2000 with Cygwin with gcc 2.95.3 (Tom Howard)

If you have a platform not listed above for a particular simulator version and
you have managed to get the simulator running on it, please let us know at
<sserver-admin@lists.sf.net>.

2The names listed are the names of the people who have verified the platform

25



3 Getting Started

3.8 Troubleshooting

In this section we list known problems and try to give some solutions or at least point
you in the right direction.

If you run into any errors in configuring, building or running the simulator, which are
not reported here please submit a bug report via the RoboCup Soccer Simulator website,
http://sserver.sf.net/, especially if you can provide a patch or hint to the solution
of the problem.

3.8.1 Libtool and Sed

Some versions of libtool are broken, which may result in build errors. A fix to the
problem is to manually set the environment variable SED to point to the location of the
sed stream editor on your machine. This is now checked by the configure script. If the
SED variable is not set, configure exits with this error:

creating libtool

*************** ERROR *****************

The SED environment variable is not set.

Please set it to the sed excutable on your system.

Depending on the type of shell you use you have to do the following to fix this error: If
you use (t)csh, set the variable using the setenv shell builtin before running configure:

-> setenv SED sed

If you use bash, please set the variable like this:

-> export SED=sed

Now run configure again

-> ./configure

If you still get an error, your PATH probably does not include the location of the sed

binary. In this case replace sed in the above instructions with the absolute path to your
sed binary (usually /bin/sed).

To set the SED variable permanently, add the above lines to your .cshrc for (t)csh
or .bashrc for bash.

3.8.2 ncurses and solaris

Todo

3.8.3 old gcc (< 2.95.3) and sstream

Todo

26



3.9 The process of a match

3.9 The process of a match

Todo

27



3 Getting Started

28



4 Soccer Server

4.1 Objects

distance
direction

GameObject

StationaryObject

direction_change
distance_change
speed_vector

MobileObject

FieldObject Line

position line_id

Marker

marker_id

Ball

team
side
uniform_number
body_direction
face_direction
neck_direction

Player

Figure 4.1: UML diagram of the objects in the simulation

29



4 Soccer Server

4.2 Protocols

4.2.1 Client Command Protocol

Connecting, reconnecting, and disconnecting

From client to server From server to client

(init TeamName [(version VerNum)] [(goalie)]) (init Side Unum PlayMode)

TeamName ::= (−| |a − z|A − Z|0 − 9)+

VerNum ::= the protocol version (e.g. 7.0)

Side ::= l | r
Unum ::= 1 ∼ 11

PlayMode ::= one of play modes
(error no more team or player or goalie)

(reconnect TeamName Unum) (reconnect Side PlayMode)

TeamName ::= (−| |a − z|A − Z|0 − 9)+
Side ::= l | r

Unum ::= 1 ∼ 11
PlayMode ::= one of play modes

(error no more team or player)
(error reconnect)

(bye)

If your client connects or reconnects sucessfully with a protocol version ≥ 7.0, the
server will additionally send following messages: a message containing the server param-
eters, a message containing the player parameters and a message containing the player
types. The format is given below. Finally, the player will receive a message on changed
players (see Sec. 4.6).

� (server param gwidth inertia moment psize pdecay prand pweight

pspeed max paccel max stamina max stamina inc recover init re-

cover dthr recover min recover dec effort init effort dthr effort min ef-

fort dec effort ithr effort inc kick rand team actuator noise prand factor l

prand factor r kick rand factor l kick rand factor r bsize bdecay brand

bweight bspeed max baccel max dprate kprate kmargin ctlradius ctl-

radius width maxp minp maxm minm maxnm minnm maxn minn

visangle visdist windir winforce winang winrand kickable area catch area l

catch area w catch prob goalie max moves ckmargin offside area win no

win random say cnt max SayCoachMsgSize clang win size clang define win

clang meta win clang advice win clang info win clang mess delay

clang mess per cycle half time sim st send st recv st sb step lcm st

SayMsgSize hear max hear inc hear decay cban cycle slow down factor

useoffside kickoffoffside offside kick margin audio dist dist qstep land qstep

dir qstep dist qstep l dist qstep r land qstep l land qstep r dir qstep l

dir qstep r CoachMode CwRMode old hear sv st start goal l start goal r

fullstate l fullstate r drop time)
� (player param player types subs max pt max

player speed max delta min player speed max delta max

stamina inc max delta factor player decay delta min

player decay delta max inertia moment delta factor

30



4.2 Protocols

dash power rate delta min dash power rate delta max

player size delta factor kickable margin delta min kick-

able margin delta max kick rand delta factor extra stamina delta min

extra stamina delta max effort max delta factor effort min delta factor)
� for each available player type a message of the form

(player type id player speed max stamina inc max player decay -

inertia moment dash power rate player size kickable margin kick rand ex-

tra stamina effort max effort min)

Client Control

From client to server Only once per cycle

(catch Direction) Yes
Direction ::= minmoment ∼ maxmoment degrees

(change view Width Quality) No
Width ::= narrow | normal | wide

Quality ::= high | low

(dash Power) Yes
Power ::= minpower ∼ maxpower

Note: backward dash consumes double stamina.

(kick Power Direction) Yes
Power ::= minpower ∼ maxpower

Direction ::= minmoment ∼ maxmoment degrees

(move X Y ) Yes
X ::= -52.5 ∼ 52.5
Y ::= -34 ∼ 34

(say Message) No
Message ::= a message

(sense body) No
The server returns
(sense body Time

(view mode {high | low} {narrow | normal | wide} )
(stamina Stamina Effort)
(speed AmountOfSpeed DirectionOfSpeed)
(head angle HeadAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change view ChangeViewCount))

(score) No
The server returns
(score Time OurScore TheirScore)

(turn Moment) Yes
Moment ::= minmoment ∼ maxmoment degrees

(turn neck Angle) Yes
Angle ::= minneckmoment ∼ maxneckmoment degrees

turn neck is relative to the direction of the body.
Can be invoked in the same cycle as a turn, dash or kick.

31



4 Soccer Server

The server may respond to the above commands with the errors:

(error unknown command)

(error illegal command form)

32



4.2 Protocols

4.2.2 Client Sensor Protocol

From server to client

(hear Time Sender ”Message”) (hear Time Online Coach Coach Language Message)
Time ::= simulation cycle of the soccerserver

Sender ::= online coach left | online coach right | coach | referee | self | Direction

Direction ::= -180 ∼180 degrees
Message ::= string

Online Coach ::= online coach left | online coach right
Coach Language Message ::= see the standard coach language section

(see Time ObjInfo+)
Time ::= simulation cycle of the soccerserver

ObjInfo ::= (ObjName Distance Direction DistChange DirChange BodyFacingDir HeadFacingDir )
| (ObjName Distance Direction DistChange DirChange
| (ObjName Distance Direction)
| (ObjName Direction)

ObjName ::= (p [”Teamname” [UniformNumber [goalie]]])
| (b)
| (g [l|r])
| (f c)
| (f [l|c|r] [t|b])
| (f p [l|r] [t|c|b])
| (f g [l|r] [t|b])
| (f [l|r|t|b] 0)
| (f [t|b] [l|r] [10|20|30|40|50])
| (f [l|r] [t|b] [10|20|30])
| (l [l|r|t|b])
| (B)
| (F)
| (G)
| (P)

Distance ::= positive real number
Direction ::= -180 ∼180 degrees

DistChange ::= real number
DirChange ::= real number

HeadFaceDir ::= -180 ∼180 degrees
BodyFaceDir ::= -180 ∼180 degrees

Teamname ::= string
UniformNumber ::= 1 ∼11

(sense body Time

(view mode {high | low} {narrow | normal | wide} )
(stamina Stamina Effort)
(speed AmountOfSpeed DirectionOfSpeed)
(head angle HeadAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change view ChangeViewCount))
Time ::= simulation cycle of the soccerserver

Stamina ::= positive real number
Effort ::= positive real number

AmountOfSpeed ::= positive real number
DirectionOfSpeed ::= -180 ∼180 degrees

HeadAngle ::= -180 ∼180 degrees
*Count ::= positive integer 33



4 Soccer Server

4.3 Sensor Models

A RoboCup agent has three different sensors. The aural sensor detects messages sent
by the referee, the coaches and the other players. The visual sensor detects visual
information about the field, like the distance and direction to objects in the player’s
current field of view. The visual sensor also works as a proximity sensor by “seeing”
objects that are close, but behind the player. The body sensor detects the current
“physical” status of the player, like its stamina, speed and neck angle. Together the
sensors give the agent quite a good picture of the environment.

4.3.1 Aural Sensor Model

Aural sensor messages are sent when a client or a coach sends a say command. The calls
from the referee is also received as aural messages. All messages are received immediately.

The format of the aural sensor message from the soccer server is:

(hear Time Sender ”Message”)

Time indicates the current time.

Sender is the relative direction to the sender if it is another player, otherwise it is
one of the following:

self: when the sender is yourself.

referee: when the sender is the referee.

online coach left or online coach right: when the sender is one of the
online coaches.

Message is the message. The maximum length is say msg size bytes. The possible
messages from the referee are described in Section 4.7.1.

The server parameters that affects the aural sensor are described in Tab. 4.1.

Parameter in server.conf Value

audio cut dist 50.0

hear max 2

hear inc 1

hear decay 2

say msg size 512

Table 4.1: Parameters for the aural sensor

34



4.3 Sensor Models

Capacity of the Aural Sensor

A player can only hear a message if the player’s hear capacity is at least hear decay,
since the hear capacity of the player is decreased by that number when a message is
heard. Every cycle the hear capacity is increased with hear inc. The maximum hear
capacity is hear max. To avoid a team from making the other team’s communication
useless by overloading the channel the players have separate hear capacities for each
team. With the current server.conf file this means that a player can hear at most one
message from each team every second simulation cycle.

If more messages arrive at the same time than the player can hear the messages actually
heard are undefined. (The current implementation choose the messages according to the
order of arrival.) This rule does not include messages from the referee, or messages from
oneself. In other words, a player can say a message and hear a message from another
player in the same timestep.

Range of Communication

A message said by a player is transmitted only to players within audio cut dist meters
from that player. For example, a defender, who may be near his own goal, can hear a
message from his goal-keeper but a striker who is near the opponent goal can not hear
the message. Messages from the referee can be heard by all players.

Aural Sensor Example

This example should show which messages get through and how to calculated the hear
capacity.

Example: Each coach sends a message every cycle. The referee send a message every
cycle. The four players in the example all send a message every cycle. Show which
messages gets through during 10 cycles (6 might be enough).

4.3.2 Vision Sensor Model

The visual sensor reports the objects currently seen by the player. The information is
automatically sent to the player every sense step, currently 150, milli-seconds.

Visual information arrives from the server in the following basic format:

(see ObjName Distance Direction DistChng DirChng BodyDir HeadDir)

where

35



4 Soccer Server

ObjName ::= (p ”Teamname” UniformNumber goalie)
| (g [l|r])
| (b)
| (f c)
| (f [l|c|r] [t|b])
| (f p [l|r] [t|c|b])
| (f g [l|r] [t|b])
| (f [l|r|t|b] 0)
| (f [t|b] [l|r] [10|20|30|40|50])
| (f [l|r] [t|b] [10|20|30])
| (l [l|r|t|b])

Distance, Direction, DistChng and DirChng are calculated in the following way:

prx = pxt − pxo (4.1)

pry = pyt − pyo (4.2)

vrx = vxt − vxo (4.3)

vry = vyt − vyo (4.4)

Distance =
√

p2
rx + p2

ry (4.5)

Direction = arctan (pry/prx)− ao (4.6)

erx = prx/Distance (4.7)

ery = pry/Distance (4.8)

DistChng = (vrx ∗ erx) + (vry ∗ ery) (4.9)

DirChng = [(−(vrx ∗ ery) + (vry ∗ erx))/Distance ] ∗ (180/π) (4.10)

BodyDir = PlayerBodyDir −AgentBodyDir−AgentHeadDir (4.11)

HeadDir = PlayerHeadDir −AgentBodyDir −AgentHeadDir (4.12)

where (pxt, pyt) is the absolute position of the target object, (pxo, pyo) is the absolute
position of the sensing player, (vxt, vyt) is the absolute velocity of the target object,
(vxo, vyo) is the absolute velocity of the sensing player, and ao is the absolute direction
the sensing player is facing. The absolute facing direction of a player is the sum of the
BodyDir and the HeadDir of that player. In addition to it, (prx, pry) and (vrx, vry) are
respectively the relative position and the relative velocity of the target, and (erx, ery)
is the unit vector that is parallel to the vector of the relative position. BodyDir and
HeadDir are only included if the observed object is a player, and is the body and head
directions of the observed player relative to the body and head directions of the observing
player. Thus, if both players have their bodies turned in the same direction, then
BodyDir would be 0. The same goes for HeadDir.

The (goal r) object is interpreted as the center of the right hand side goalline. (f c)
is a virtual flag at the center of the field. (f l b) is the flag at the lower left of the field.
(f p l b) is a virtual flag at the lower right corner of the penalty box on the left side

36



4.3 Sensor Models

(flag b l 50)

(flag l t 30)

(flag l t 10)

(flag l 0)

(flag l b 10)

(flag l b 30)

(flag l t 20)

(flag l b 20)

(flag b l 20)(flag b l 40)

(flag b l 10) (flag b r 10) (flag b r 30)

(flag b r 40)

(flag b r 50)(flag b l 30)

(flag b r 20)

(flag b 0)

(goal l)

(flag g l b)

(flag g l t)

(flag p l b)

(flag p l c)

(flag p l t)

(flag c b)

(flag c)

(flag l b)

(flag l t) (flag r t)

(flag r b)

(flag c t)

(flag p r t)

(flag p r c)

(flag p r b)

(goal r)

(flag g r t)

(flag g r b)

(line l)

(line t)

(line r)

(line b)

(flag r 0)

(flag r t 10)

(flag r t 20)

(flag r t 30)

(flag r b 10)

(flag r b 20)

(flag r b 30)

(flag t l 50)

(flag t l 40)

(flag t l 30)

(flag t l 20)

(flag t l 10) (flag t r 10)

(flag t r 20)

(flag t r 30)

(flag t r 40)

(flag t r 50)(flag t 0)

Physical boundary

Figure 4.2: The flags and lines in the simulation.

of the field. (f g l b) is a virtual flag marking the right goalpost on the left goal. The
remaining types of flags are all located 5 meters outside the playing field. For example,
(f t l 20) is 5 meters from the top sideline and 20 meters left from the center line. In
the same way, (f r b 10) is 5 meters right of the right sideline and 10 meters below the
center of the right goal. Also, (f b 0) is 5 meters below the midpoint of the bottom
sideline.

In the case of (l ...), Distance is the distance to the point where the center line of the
player’s view crosses the line, and Direction is the direction of the line.

Range of View

The visible sector of a player is dependant on several factors. First of all we have the
server parameters sense step and visible angle which determines the basic time step
between visual information and how many degrees the player’s normal view cone is. The
current default values are 150 milli-seconds and 90 degrees.

The player can also influence the frequency and quality of the information by changing
ViewWidth and ViewQuality.

37



4 Soccer Server

To calculate the current view frequency and view angle of the agent use equations
4.13 and 4.14.

view frequency = sense step ∗ view quality factor ∗ view width factor (4.13)

where view quality factor is 1 iff ViewQuality is high and 0.5 iff ViewQuality is
low; view width factor is 2 iff ViewWidth is narrow, 1 iff ViewWidth is normal,
and 0.5 iff ViewWidth is wide.

view angle = visible angle ∗ view width factor (4.14)

where view width factor is 0.5 iff ViewWidth is narrow, 1 iff ViewWidth is nor-
mal, and 2 iff ViewWidth is wide.

The player can also “see” an object if it’s within visible distance meters of the
player. If the objects is within this distance but not in the view cone then the player
can know only the type of the object (ball, player, goal or flag), but not the exact name
of the object. Moreover, in this case, the capitalized name, that is “B”, “P”, “G” and
“F”, is used as the name of the object rather than “b”, “p”, “g” and “f”.

The following example and Fig. 4.3 are taken from [19].
The meaning of the view angle parameter is illustrated in Fig. 4.3. In this figure,

the viewing agent is the one shown as two semi-circles. The light semi-circle is its front.
The black circles represent objects in the world. Only objects within view angle◦/2,
and those within visible distance of the viewing agent can be seen. Thus, objects b

and g are not visible; all of the rest are.
As object f is directly in front of the viewing agent, its angle would be reported as 0

degrees. Object e would be reported as being roughly -40◦, while object d is at roughly
20◦.

Also illustrated in Fig. 4.3, the amount of information describing a player varies with
how far away the player is. For nearby players, both the team and the uniform number
of the player are reported. However, as distance increases, first the likelihood that
the uniform number is visible decreases, and then even the team name may not be
visible. It is assumed in the server that unum far length ≤ unum too far length ≤
team far length ≤ team too far length. Let the player’s distance be dist. Then

� If dist ≤ unum far length, then both uniform number and team name are visible.

� If unum far length < dist < unum too far length, then the team name is
always visible, but the probability that the uniform number is visible decreases
linearly from 1 to 0 as dist increases.

� If dist ≥ unum too far length, then the uniform number is not visible.

� If dist ≤ team far length, then the team name is visible.

� If team far length < dist < team too far length, then the probability that
the team name is visible decreases linearly from 1 to 0 as dist increases.

38



4.3 Sensor Models

d

b
e

ca
g

f

field_length

field_width

visible_distance

view_angle

unum_far_length

unum_too_far_length
team_far_length

team_too_far_length

Client whose vision perspective is being illustrated

Figure 4.3: The visible range of an individual agent in the soccer server. The view-
ing agent is the one shown as two semi-circles. The light semi-circle is its
front. The black circles represent objects in the world. Only objects within
view angle◦/2, and those within visible distance of the viewing agent
can be seen. unum far length, unum too far length, team far length,
and team too far length affect the amount of precision with which a play-
ers’ identity is given. Taken from [19].

39



4 Soccer Server

� If dist ≥ team too far length, then the team name is not visible.

For example, in Fig. 4.3, assume that all of the labeled circles are players. Then player
c would be identified by both team name and uniform number; player d by team name,
and with about a 50% chance, uniform number; player e with about a 25% chance, just
by team name, otherwise with neither; and player f would be identified simply as an
anonymous player.

Parameter in server.conf Value

sense step 150

visible angle 90.0

visible distance 3.0

unum far lengtha 20.0

unum too far lengtha 40.0

team far lengtha 40.0

team too far lengtha 60.0

quantize step 0.1

quantize step l 0.01

aNot in server.conf, but compiled into the server

Table 4.2: Parameters for the visual sensors

Visual Sensor Noise Model

In order to introduce noise in the visual sensor data the values sent from the server is
quantized. For example, the distance value of the object, in the case where the object
in sight is a ball or a player, is quantized in the following manner:

d′ = Quantize(exp(Quantize(log(d),quantize step)), 0.1) (4.15)

where d and d′ are the exact distance and quantized distance respectively, and

Quantize(V,Q) = ceiling(V/Q) ·Q (4.16)

This means that players can not know the exact positions of very far objects. For
example, when distance is about 100.0 the maximum noise is about 10.0, while when
distance is less than 10.0 the noise is less than 1.0.

In the case of flags and lines, the distance value is quantized in the following manner.

d′ = Quantize(exp(Quantize(log(d),quantize step l)), 0.1) (4.17)

40



4.3 Sensor Models

4.3.3 Body Sensor Model

The body sensor reports the current “physical” status of the player. The information is
automatically sent to the player every sense body step, currently 100, milli-seconds.

The format of the body sensor message is:
(sense body Time

(view mode ViewQuality ViewWidth)
(stamina Stamina Effort)
(speed AmountOfSpeed DirectionOfSpeed)
(head angle HeadDirection)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change view ChangeViewCount))

ViewQuality is one of high and low.

ViewWidth is one of narrow, normal, and wide.

AmountOfSpeed is an approximation of the amount of the player’s speed.

DirectionOfSpeed is an approximation of the direction of the player’s speed.

HeadDirection is the relative direction of the player’s head.

The Count variables are the total number of commands of that type executed by
the server. For example DashCount = 134 means that the player has executed 134
dash commands so far.

The semantics of the parameters are described where they are actually used. The
ViewQuality and ViewWidth parameters are for example described in the Section 4.3.2.

The server parameters that affects the body sensor are described in Tab. 4.3.

Parameter in server.conf Value

sense body step 100

Table 4.3: Parameters for the body sensor

41



4 Soccer Server

4.4 Movement Model

In each simulation step, movement of each object is calculated as following manner:

(ut+1
x , ut+1

y ) = (vt
x, vt

y) + (at
x, at

y): accelerate (4.18)

(pt+1
x , pt+1

y ) = (pt
x, pt

y) + (ut+1
x , ut+1

y ): move

(vt+1
x , vt+1

y ) = decay× (ut+1
x , ut+1

y ): decay speed

(at+1
x , at+1

y ) = (0, 0): reset acceleration

where, (pt
x, pt

y), and (vt
x, vt

y) are respectively position and velocity of the object in
timestep t. decay is a decay parameter specified by ball decay or player decay.
(at

x, at
y) is acceleration of object, which is derived from Power parameter in dash (in the

case the object is a player) or kick (in the case of a ball) commands in the following
manner:

(at
x, at

y) = Power × power rate× (cos(θt), sin(θt))

where θt is the direction of the object in timestep t and power rate is dash power rate
or is calculated from kick power rate as described in Sec. 4.5.3. In the case of a player,
this is just the direction the player is facing. In the case of a ball, its direction is given
as the following manner:

θt

ball = θt

kicker + Direction

where θt

ball and θt

kicker are directions of ball and kicking player respectively, and
Direction is the second parameter of a kick command.

4.4.1 Movement Noise Model

In order to reflect unexpected movements of objects in real world, ß adds noise to the
movement of objects and parameters of commands.

Concerned with movements, noise is added into Eqn. 4.18 as follows:

(ut+1
x , ut+1

y ) = (vt
x, vt

y) + (at
x, at

y) + (r̃rmax, r̃rmax)

where r̃max is a random number whose distribution is uniform over the range
[−rmax, rmax]. rmax is a parameter that depends on amount of velocity of the ob-
ject as follows:

rmax = rand · |(vt
x, vt

y)|

where rand is a parameter specified by player rand or ball rand.

Noise is added also into the Power and Moment arguments of a command as follows:

argument = (1 + r̃rand) · argument

42



4.5 Action Models

4.4.2 Collision Model

If at the end of the simulation cycle, two objects overlap, then the objects are moved
back until they do not overlap. Then the velocities are multiplied by -0.1. Note that it
is possible for the ball to go through a player as long as the ball and the player never
overlap at the end of the cycle.

4.5 Action Models

4.5.1 Catch Model

The goalie is the only player with the ability to catch a ball. The goalie can catch the
ball in play mode ‘play on’ in any direction, if the ball is within the catchable area and
the goalie is inside the penalty area. If the goalie catches into direction ϕ, the catchable
area is a rectangular area of length catchable area l and width catchable area w in
direction ϕ (see Fig. 4.4). The ball will be caught with probability catch probability,
if it is inside this area (and it will not be caught if it is outside this area). For the current
values of catch command parameters see Tab. 4.4.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�� ��
�������
�������
�������
�������
�������
�������	


�� �
����
���

�� ��

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����

ca
tc

hab
le_

ar
ea

_l

45° catch angle

catchable_area_w

Figure 4.4: Catchable area of the goalie when doing a catch 45

If a catch command was unsuccessful, it takes catch ban cycle cycles until an-
other catch command can be used (catch commands during this time have simply
no effect). If the goalie succeeded in catching the ball, the play mode will change to
‘goalie catch ball [l|r]’ first and ‘free kick [l|r]’, after that during the same cy-
cle. Once the goalie caught the ball, it can use the move command to move with the ball
inside the penalty area. The goalie can use the move command goalie max moves
times before it kicks the ball. Additional move commands do not have any effect and

43



4 Soccer Server

the server will respond with (error too many moves). Please note that catching the
ball, moving around, kicking the ball a short distance and immediately catching it again
to move more than goalie max moves times is considered as ungentlemanly play.

Parameter in server.conf Value

catchable area l 2.0

catchable area w 1.0

catch probability 1.0

catch ban cycle 5

goalie max moves 2

Table 4.4: Parameters for the goalie catch command

4.5.2 Dash Model (incl. stamina model)

Dash Model

The dash command is used to accelerate the player in direction of its body. dash takes
the acceleration power as a parameter. The valid range for the acceleration power can be
configured in server.conf, the respective parameters are minpower and maxpower.
For the current values of parameters for the dash model, see Tab. 4.5.

Each player has a certain amount of stamina that will be consumed by dash com-
mands. At the beginning of each half, the stamina of a player is set to stamina max.
If a player accelerates forward (power > 0), stamina is reduced by power. Accelerat-
ing backwards (power < 0) is more expensive for the player: stamina is reduced by
−2 · power. If the player’s stamina is lower than the power needed for the dash, power

is reduced so that the dash command does not need more stamina than available. Het-
erogeneous players will use some extra stamina every time the available power is lower
than the needed stamina. The amount of extra stamina depends on the player type and
the parameters extra stamina delta min and extra stamina delta max.

After reducing the stamina, the server calculates the effective dash power for the
dash command. The effective dash power edp depends on the dash power rate and
the current effort of the player. The effort of a player is a value between effort min
and effort max; it is dependent on the stamina management of the player (see below).

edp = effort · dash power rate · power (4.19)

edp and the players current body direction are tranformed into vector and added to
the players current acceleration vector ~an (usually, that should be 0 before, since a player
cannot dash more than once a cycle and a player does not get accelerated by other means
than dashing1).

At the transition from simulation step n to simulation step n + 1, acceleration ~an is
applied:

1is that so?

44



4.5 Action Models

1. ~an is normalized to a maximum length of player accel max.

2. ~an is added to current players speed ~vn. ~vn will be normalized to a maximum
length of player speed max. For heterogeneous players, the maximum speed
is a value between player speed max + player speed max delta min and
player speed max + player speed max delta max in player.conf.

3. Noise ~n and wind ~w will be added to ~vn. Both noise and wind are configurable in
server.conf. Parameters responsible for the wind are wind force, wind dir and
wind rand. With the current settings, there is no wind on the simulated soccer
field. The responsible parameter for the noise is player rand. Both direction
and length of the noise vector are within the interval [−|~vn| · player rand . . . |~vn| ·
player rand].

4. The new position of the player ~pn+1 is the old position ~pn plus the velocity vector
~vn (i.e. the maximum distance difference for the player between two simulation
steps is player speed max).

5. player decay is applied for the velocity of the player: ~vn+1 = ~vn · player decay.
Acceleration ~an+1 is set to zero.

Stamina Model

For the stamina of a player, there are three important variables: the stamina value,
recovery and effort. stamina is decreased when dashing and gets replenished slightly
each cycle. recovery is responsible for how much the stamina recovers each cycle, and
the effort says how effective dashing is (see section above). Important parameters for
the stamina model are changeable in the files server.conf and player.conf, see also
Tab. 4.5. Basically, the algorithm shown in Fig. 4.5 says that every simulation step
the stamina is below some threshold, effort or recovery are reduced until a minimum is
reached. Every step the stamina of the player is above some threshold, effort is increased
up to a maximum. The recovery value is only reset to 1.0 each half, but it will not be
increased during a game.

4.5.3 Kick Model

There are no principal changes to the kick model from soccer server version 6 to soccer
server version 7, so your old implementation should still work. However, due to changes
in the server parameter file, in some cases multiple kicks are not necessary anymore.

The kick command takes two parameters, the kick power the player client wants to
use (between minpower and maxpower) and the angle the player kicks the ball to.
The angle is given in degrees and has to be between minmoment and maxmoment
(see Tab. 4.6 for current parameter values).

Once the kick command arrived at the server, the kick will be executed if the ball
is kick-able for the player and the player is not marked offside. The ball is kick-able

45



4 Soccer Server

Basic Parameters Parameters for heterogeneous Players
server.conf player.conf

Name Value Name Value Range

minpower -100

maxpower 100

stamina max 4000

stamina inc max 45 stamina inc max delta factor -100.0
player speed max delta min 0.0

25

player speed max delta max 0.2
— 45

extra staminaa 0.0 extra stamina delta min 0.0 0.0
extra stamina delta max 100.0 — 100.0

dash power rate 0.006 dash power rate delta min 0.0 0.006
dash power rate delta max 0.002 — 0.008

effort min 0.6 effort min delta factor -0.002
extra stamina delta min 0.0

0.4

extra stamina delta max 100.0
— 0.6

effort maxa 1.0 effort max delta factor -0.002
extra stamina delta min 0.0

0.8

extra stamina delta max 100.0
— 1.0

effort dec thr 0.3

effort dec 0.005

effort inc thr 0.6

effort inc 0.01

recover dec thr 0.3

recover dec 0.002

recover min 0.5

player accel max 1.0

player speed max 1.0 player speed max delta min 0.0 1.0
player speed max delta max 0.2 — 1.2

player rand 0.1

wind force 0.0

wind dir 0.0

wind rand 0.0

player decay 0.4 player decay delta min 0.0 0.4
player decay delta max 0.2 — 0.6

aNot in server.conf, but compiled into the server

Table 4.5: Dash and Stamina Model Parameters for Soccer Server 7

46



4.5 Action Models

{if stamina is below recovery decrement threshold, recovery is reduced}
if stamina ≤ recover dec thr · stamina max then

if recovery > recover min then
recovery ← recovery − recover dec

end if
end if

{if stamina is below effort decrement threshold, effort is reduced}
if stamina ≤ effort dec thr · stamina max then

if effort > effort min then
effort ← effort − effort dec

end if
effort ← max(effort, effort min)

end if

{if stamina is above effort increment threshold, effort is increased}
if stamina ≥ effort inc thr · stamina max then

if effort < effort max then
effort ← effort + effort inc
effort ← min(effort, effort max)

end if
end if

{recover the stamina a bit}
stamina ← stamina + recovery · stamina inc max
stamina ← min(stamina, stamina max)

Figure 4.5: The stamina model algorithm

47



4 Soccer Server

for the player, if the distance between the player and the ball is between 0 and kick-
able margin. Heterogeneous players can have different kickable margins. For the cal-
culation of the distance during this section, it is important to know that if we talk of
distance between player and ball, we talk about the minimal distance between the outer
shape of both player and ball. So the distance in this section is the distance between
the center of both objects minus the radius of the ball minus the radius of the player.

The first thing to be calculated for the kick is the effective kick power ep:

ep = kick power · kick power rate (4.20)

If the ball is not directly in front of the player, the effective kick power will be reduced
by a certain amount dependent on the position of the ball with respect to the player.
Both angle and distance are important.

If the relative angle of the ball is 0 � wrt. the body direction of the player client — i.e.
the ball is in front of the player — the effective power will stay as it is. The larger the
angle gets, the more the effective power will be reduced. The worst case is if the ball is
lying behind the player (angle 180 � ): the effective power is reduced by 25%.

The second important variable for the effective kick power is the distance from the
ball to the player: it is quite obvious that – should the kick be executed – the distance
between ball and player is between 0 and kickable margin. If the distance is 0, the
effective kick power will not be reduced again. The further the ball is away from the
player client, the more the effective kick power will be reduced. If the ball distance is
kickable margin, the effective kick power will be reduced by 25% of the original kick
power.

The overall worst case for kicking the ball is if a player kicks a distant ball behind
itself: 50% of kick power will be used. For the effective kick power, we get the formula
4.21. (dir diff means the absolute direction difference between ball and the player’s body
direction, dist diff means the absolute distance between ball and player.)
0 ≤ dir diff ≤ 180◦ ∧ 0 ≤ dist diff ≤ kickable margin:

ep = ep ·

(

1− 0.25 ·
dir diff

180◦
− 0.25 ·

dist ball

kickable margin

)

(4.21)

The effective kick power is used to calculate ~ani
, an acceleration vector that will be

added to the global ball acceleration ~an during cycle n (remember that we have a multi
agent system and each player close to the ball can kick it during the same cycle).

There is a server parameter, kick rand, that can be used to generate some noise
to the ball acceleration. For the default players, kick rand is 0 and no noise will be
generated. For heterogeneous players, kick rand depends on kick rand delta factor
in player.conf and on the actual kickable margin. In RoboCup 2000, kick rand was
used to generate some noise during evaluation round for the normal players.

During the transition from simulation step n to simulation step n + 1 acceleration ~an

is applied:

1. ~an is normalized to a maximum length of baccel max. Currently (Server 7), the
maximum acceleration is equal to the maximum effective kick power.

48



4.5 Action Models

2. ~an is added to the current ball speed ~vn. ~vn will be normalized to a maximum
length of ball speed max.

3. Noise ~n and wind ~w will be added to ~vn. Both noise and wind are configurable in
server.conf. Parameters responsible for the wind are wind force, wind dir and
wind rand. The responsible parameter for the noise is ball rand. Both direction
and length of the noise vector are within the interval [−|~vn| · ball rand . . . |~vn| ·
ball rand].

4. The new position of the ball ~pn+1 is the old position ~pn plus the velocity vector ~vn

(i.e. the maximum distance difference for the ball between two simulation steps is
ball speed max).

5. ball decay is applied for the velocity of the ball: ~vn+1 = ~vn · ball decay. Acceler-
ation ~an+1 is set to zero.

With the current settings the ball covers a distance up to 45, assuming an optimal
kick. 53 cycles after an optimal kick, the distance from the kick off position to the ball
is about 43, the remaining velocity is smaller than 0.1. 15 cycles after an optimal kick,
the ball covers a distance of 27 – 28 and the remaining veloctity is slightly larger than
1.

Implications from the kick model and the current parameter settings are that it still
might be helpful to use several small kicks for a compound kick – for example stopping
the ball, kick it to a more advantageous position within the kickable area and kick it to
the desired direction. It would be another possibility to accelerate the ball to maximum
speed without putting it to relative position (0,0 � ) using a compound kick.

4.5.4 Move Model

The move command can be used to place a player directly onto a desired position on
the field. move exists to set up the team and does not work during normal play. It is
available at the beginning of each half (play mode ‘before kick off’) and after a goal
has been scored (play modes ‘goal r n ’ or ‘goal l n ’). In these situations, players can
be placed on any position in their own half (i.e. X < 0) and can be moved any number
of times, as long as the play mode does not change. Players moved to a position on the
opponent half will be set to a random position on their own side by the server.

A second purpose of the move command is to move the goalie within the penalty
area after the goalie caught the ball (see also Sec. 4.5.1). If the goalie caught the ball, it
can move together with the ball within the penalty area. The goalie is allowed to move
goalie max moves times before it kicks the ball. Additional move commands do not
have any effect and the server will respond with (error too many moves).

4.5.5 Say Model

Using the say command, players can broadcast messages to other players. Messages
can be say msg size characters long, where valid characters for say messages are from

49



4 Soccer Server

Basic Parameters Parameters for heterogeneous Players
server.conf player.conf

Name Value Name Value Range

minpower -100

maxpower 100

minmoment -180

maxmoment 180

kickable margin 0.7 kickable margin delta min 0.0 0.7
kickable margin delta max 0.2 — 0.9

kick power rate 0.027

kick rand 0.0 kick rand delta factor 0.5
kickable margin delta min 0.0

0.0

kickable margin delta max 0.2
— 0.1

ball size 0.085

ball decay 0.94

ball rand 0.05

ball speed max 2.7

ball accel max 2.7

wind force 0.0

wind dir 0.0

wind rand 0.0

Table 4.6: Ball and Kick Model Parameters

Parameter in server.conf Value

goalie max moves 2

Table 4.7: Parameter for the move command

50



4.5 Action Models

the set [-0-9a-zA-Z ().+*/?<> ] (without the square brackets). Messages players say
can be heard within a distance of audio cut dist by members of both teams (see also
Sec. 4.3.1). Say messages sent to the server will be sent back to players within that
distance immediately. The use of the say command is only restricted by the limited
capacity of the players of hearing messages.

Parameter in server.conf Value

say msg size 512

audio cut dist 50

hear max 2

hear inc 1

hear decay 2

Table 4.8: Parameters for the say command

4.5.6 Turn Model

While dash is used to accelerate the player in direction of its body, the turn command
is used to change the players body direction. The argument for the turn command is
the moment; valid values for the moment are between minmoment and maxmoment.
If the player does not move, the moment is equal to the angle the player will turn.
However, there is a concept of inertia that makes it more difficult to turn when you are
moving. Specifically, the actual angle the player is turned is as follows:

actual angle = moment/(1.0 + inertia moment · player speed) (4.22)

inertia moment is a server.conf parameter with default value 5.0. Therefore
(with default values), when the player is at speed 1.0, the maximum effective turn
he can do is ±30. However, notice that because you can not dash and turn dur-
ing the same cycle, the fastest that a player can be going when executing a turn is
player speed max · player decay, which means the effective turn for a default player
(with default values) is ±60.

For heterogeneous players, the inertia moment is the default inertia value plus a
value between min. player decay delta min · inertia moment delta factor and
max. player decay delta max · inertia moment delta factor.

4.5.7 TurnNeck Model

With turn neck, a player can turn its neck somewhat independently of its body. The
angle of the head of the player is the viewing angle of the player. The turn command
changes the angle of the body of the player while turn neck changes the neck angle
of the player relative to its body. The minimum and maximum relative angle for the
player’s neck are given by minmoment and maxmoment in server.conf. Remember

51



4 Soccer Server

Basic Parameters Parameters for heterogeneous Players
server.conf player.conf

Name Value Name Value Range

minmoment -180

maxmoment 180

inertia moment 5.0 player decay delta min 0.0
player decay delta max 0.2

5.0

inertia moment delta factor 25.0
10.0

Table 4.9: Turn Model Parameters

that the neck angle is relative to the body of the player so if the client issues a turn
command, the viewing angle changes even if no turn neck command was issued.

Also, turn neck commands can be executed during the same cycle as turn, dash,
and kick commands. turn neck is not affected by momentum like turn is. The argu-
ment for a turn neck command must be in the range between minneckmoment and
maxneckmoment.

Parameter in server.conf Value

minneckang -90

maxneckang 90

minneckmoment -180

maxneckmoment 180

Table 4.10: Parameter for the turn neck command

4.6 Heterogeneous Players

With Soccer Server 7, heterogeneous players were introduced. For heterogeneous players,
Soccer Server generates player types random player types at startup. The player types
have different abilities based on the tradeoffs defined in the player.conf file. Both teams
of a match use the same player types. Type 0 is the default type and always the same.

When the players connect to the server, the receive information on the available player
types (see Sec. 4.2.1). The online coach can change player types unlimited times in
‘before kick off’ mode and change player types subs max times during other non-
‘play on’ play modes using the change player type . . . command (see Sec. 7.4).

Each time a player is substituted by some other player type, its stamina, recovery and
effort is reset to the initial (maximum) value of the respective player type.

52



4.7 Referee Model

Parameter in player.conf Value

player types 7

subs max 3

Table 4.11: Parameter for substitutions and heterogeneous player types

4.7 Referee Model

The Automated Referee sends messages to the players, so that players know the actual
play mode of the game. The rules and the behavior for the automated referee are
described in Sec. 2.2.1. Players receive the referee messages as hear messages. A player
can hear referee messages in every situation independent of the number of messages the
player heard from other players.

4.7.1 Play Modes and referee messages

The change of the play mode is announced by the referee. Additionally, there are some
referee messages announcing events like a goal or a foul. If you have a look into the
server source code, you will notice some additional play modes that are currently not
used. Both play modes and referee messages are announced using (referee String ),
where String is the respective play mode or message string. The play modes are listed
in Tab. 4.12, for the messages see Tab. 4.13.

Play Mode tc subsequent play mode comment

‘before kick off’ 0 ‘kick off Side ’ at the beginning of a half
‘play on’ during normal play
‘time over’
‘kick off Side ’ announce start of play

(after pressing the Kick Off button)

‘kick in Side ’
‘free kick Side ’
‘corner kick Side ’
‘goal kick Side ’ ‘play on’ play mode changes once

the ball leaves the penalty area
‘goal Side ’ currently unused

(but see Tab. 4.13).
‘drop ball’ 0 ‘play on’
‘offside Side ’ 30 ‘free kick Side ’ for the opposite side

where Side is either the character ‘l’ or ‘r’, OSide means opponent’s side.

tc is the time (in number of cycles) until the subsequent play mode will be announced

Table 4.12: Play Modes

53



4 Soccer Server

Message tc subsequent play mode comment
goal Side n 50 ‘kick off OSide ’ announce the nth goal for a team
foul Side 0 ‘free kick OSide ’ announce a foul
goalie catch ball Side 0 ‘free kick OSide ’
time up without a team 0 ‘time over’ sent if there was no opponent until

the end of the second half
time up 0 ‘time over’ sent once the game is over

(if the time is ≥ second half and
the scores for each team are different)

half time 0 ‘before kick off’
time extended 0 ‘before kick off’

where Side is either the character ‘l’ or ‘r’, OSide means opponent’s side.
tc is the time (in number of cycles) until the subsequent play mode will be announced

Table 4.13: Referee Messages

4.8 The Soccer Simulation

In Sec. 4.4, we gave a description on how the objects are moved with respect to their ac-
celerations and velocities. In this section, we describe at what point in time acceleration
and velocities are applied to the objects during the simulation.

4.8.1 Description of the simulation algorithm

In Soccer Server, time is updated in discrete steps. A simulation step is 100ms. During
each simulation step, objects (i.e. players and the ball) stay on their positions. If
players decide to act within a step, actions are applied to the players and the ball at the
transition from one simulation cycle to the next. Depending on the play mode, not all
actions are allowed for the players (for instance in ‘before kick off’ mode, players can
turn and move, but they cannot dash), so only allowed actions will be applied and
take effect.

If during a step, several players kick the ball, all the kicks are applied to the ball
and a resulting acceleration is calculated. If the resulting acceleration is larger than the
maximum acceleration for the ball, acceleration is normalized to its maximum value.
After moving the objects, the server checks for collisions and updates velocities if a
collision occurred (see also Sec. 4.4.2).

When applying accelerations and velocities to the objects, the order of application is
randomized. After changing objects positions, and updating velocities and accelerations,
the automated referee checks the situation and changes the play mode or the object
positions, if necessary. Changes to the play mode are announced immediately. Finally,
stamina for each player is updated.

54



4.9 Using Soccerserver

4.9 Using Soccerserver

4.9.1 The Soccerserver Parameters

Table 4.14: Parameters adjustable in server.conf

Default Current Value
Name Value in server.conf Description

goal width 7.32 14.02 goal width
player size 0.3 player size
player decay 0.4 player decay
player rand 0.1
player weight 60.0 player weight
player speed max 1.0 max. player velocity
player accel max 1.0 max. player acceleration
stamina max 4000.0 max. player stamina
stamina inc max 45.0 max. player stamina increment
recover dec thr 0.3 player recovery decrement

threshold
recover min 0.5 min. player recovery
recover dec 0.002 player recovery decrement
effort dec thr 0.3 player dash effort

decrement threshold
effort min 0.6 min. player dash effort
effort dec 0.005 dash effort decrement
effort inc thr 0.6 dash effort increment treshold
effort inc 0.01 dash effort increment
kick rand 0.0 noise added directly to kicks
team actuator noise flag whether to use team

specific actuator noise
prand factor l factor to multiply prand

for left team
prand factor r factor to multiply prand

for right team
kick rand factor l factor to multiply

kick rand for left team
kick rand factor r factor to multiply

kick rand for right team
ball size 0.085 ball size
ball decay 0.94 ball decay
ball rand 0.05
ball weight 0.2 weight of the ball
ball speed max 2.7 max. ball velocity
ball accel max 2.7 max. ball acceleration
dash power rate 0.006 dash power rate
kick power rate 0.027 kick power rate
kickable margin 0.7 kickable margin
control radius control radius
catch probability 1.0 goalie catch probability
catchable area l 2.0 goalie catchable area length
catchable area w 1.0 goalie catchable area width
goalie max moves 2 goalie max. moves after a catch
maxpower 100 max power

55



4 Soccer Server

Table 4.14: (continued)

Default Current Value
Name Value in server.conf Description

minpower -100 min power
maxmoment 180 max. moment
minmoment -180 min. moment
maxneckmoment 180 max. neck moment
minneckmoment -180 min. neck moment
maxneckang 90 max. neck angle
minneckang -90 min. neck angle
visible angle 90.0 visible angle
visible distance visible distance
audio cut dist 50.0 audio cut off distance
quantize step 0.1 quantize step of distance

for movable objects
quantize step l 0.01 quantize step of distance

for landmarks
quantize step dir
quantize step dist team l
quantize step dist team r
quantize step dist l team l
quantize step dist l team r
quantize step dir team l
quantize step dir team r
ckick margin 1.0 corner kick margin
wind dir 0.0 0.0 wind direction
wind force 10.0 0.0
wind rand 0.3 0.0
wind none wind factor is none
wind random false wind factor is random
inertia moment 5.0 intertia moment for turn
half time 300 length of a half time in seconds
drop ball time 200 number of cycles to wait until

dropping the ball automatically
port 6000 player port number
coach port 6001 (offline) coach port
olcoach port online coach port
say coach cnt max 128 upper limit of the number of online

coach’s message
say coach msg size 128 upper limit of length of online

coach’s message
simulator step 100 time step of simulation [unit:msec]
send step 150 time step of visual

information [unit:msec]
recv step 10 time step of acception of

commands [unit: msec]
sense body step 100
say msg size 512 string size of say message [unit:byte]
clang win size 300 time window which controls

how many messages can be
sent (coach language)

clang define win 1 number of messages per window
clang meta win 1

56



4.9 Using Soccerserver

Table 4.14: (continued)

Default Current Value
Name Value in server.conf Description

clang advice win 1
clang info win 1
clang mess delay 50 delay between receipt of message

and send to players
clang mess per cycle 1 maximum number of coach messages

sent per cycle
hear max 2
hear inc 1
hear decay 2
catch ban cycle 5
coach
coach w referee
old coach hear
send vi step 100 interval of online coach’s look
use offside on flag for using off side rule
offside active area size 5 offside active area size
forbid kick off offside on forbid kick off offside
log file
record
record version 3 flag for record log
record log on flag for record client command log
record messages
send log on flag for send client command log
log times off flag for writing cycle lenth

to log file
verbose off flag for verbose mode
replay
offside kick margin 9.15 offside kick margin
slow down factor
start goal l
start goal r
fullstate l
fullstate r

57



4 Soccer Server

58



5 The Soccer Monitor

5.1 Introduction

Soccermonitor provides a visual interface. Using the monitor we can watch a game
vividly and control the proceeding of the game. By cooperating with logplayer, soc-
cermonitor can replay games, so that it becomes very convenient to analyze and debug
clients.

5.2 Getting started

To connect the soccermonitor with the soccerserver, you can use the command following:

-> cd monitor

-> soccermonitor -f ConfFileName [-ParameterName Value]*

By specifying the arguments, you can modify the parameters of soccermonitor (See 5.6
Settings and Parameters) instead of modifying monitor configuration file.

If you use script “sserver” to start soccerserver, a monitor will be automatically started
and connected with the server:

-> sserver

5.3 Communication from Server to Monitor

Soccermonitor and soccerserver are connected via UDP/IP on port 6000 (default). When
the server is connected with the monitor , it will send information to the monitor every
cycle. Soccerserver 7.xx provides two different formats (version 1 and version 2).The
server will decide which format is used according to the initial command sent by the
monitor (see 5.4). The detailed data structure information can be found in appendix C.

5.3.1 Version 1

Soccerserver and logplayer send dispinfo t structs to the soccermonitor. Dispinfo t con-
tains a union with three different types of information:

� showinfo t: information needed to draw the scene

59



5 The Soccer Monitor

� msginfo t : contains the messages from the players and the referee shown in the
bottom windows

� drawinfo t: information for monitor to draw circles, lines or points (not used by
the server)

The size of dispinfo t is determined by its largest subpart (msg) and is 2052 bytes
(the union causes some extra network load and may be changed in future versions).
In order to keep compatibility between different platforms, values in dispinfo t are
represented by network byte order. Which information is included is determined by
the mode information. NO INFO indicates no valid info contained (never sent by the
server), BLANK MODE tells the monitor to show a blank screen (used by logplayer)
(server/param.h).

NO_INFO 0

SHOW_MODE 1

MSG_MODE 2

DRAW_MODE 3

BLANK_MODE 4

Following is a description of these structs and the ones contained:

Showinfo

A showinfo t struct is passed every cycle (100 ms) to the monitor and contains the state
and positions of players and the ball.

typedef struct {

char pmode ;

team_t team[2] ;

pos_t pos[MAX_PLAYER * 2 + 1] ;

short time ;

} showinfo_t ;

� pmode: currently active playmode of the game (server/types.h)

PM_Null,

PM_BeforeKickOff,

PM_TimeOver,

PM_PlayOn,

PM_KickOff_Left,

PM_KickOff_Right,

PM_KickIn_Left,

PM_KickIn_Right,

PM_FreeKick_Left,

PM_FreeKick_Right,

60



5.3 Communication from Server to Monitor

PM_CornerKick_Left,

PM_CornerKick_Right,

PM_GoalKick_Left,

PM_GoalKick_Right,

PM_AfterGoal_Left,

PM_AfterGoal_Right,

PM_Drop_Ball,

PM_OffSide_Left,

PM_OffSide_Right,

PM_MAX

� team: information about the teams. Index 0 is for team playing from left to right.

� pos: position information of players. Index 0 represents the ball, indices 1 to 11 is
for team[0] (left to right) and 12 to 22 for team[1].

� time: current time ranging from 1 to 12000 (in extra time)

typedef struct {

char name[16]; /* name of the team */

short score; /* current score of the team */

} team_t ;

typedef struct {

short enable ;

short side ;

short unum ;

short angle ;

short x ;

short y ;

} pos_t ;

Values of the elements can be

� enable: state of the object. Players not on the field (and the ball) have state
DISABLE. The other bits of enable allow monitors to draw the state and action
of a player more detailed (server/types.h).

DISABLE (0x00)

STAND (0x01)

KICK (0x02)

KICK_FAULT (0x04)

GOALIE (0x08)

CATCH (0x10)

CATCH_FAULT (0x20)

61



5 The Soccer Monitor

� side: side the player is playing on. LEFT means from left to right, NEUTRAL is
the ball (server/types.h).

LEFT 1

NEUTRAL 0

RIGHT -1

� unum: uniform number of a player ranging from 1 to 11

� angle: angle the agent is facing ranging from -180 to 180 degrees, where -180 is
view to the left side of the screen, -90 to the top, 0 to the right and 90 to the
bottom.

� x, y: position of the player on the screen. (0, 0) is the midpoint of the field, x
increases to the right, y to the bottom of the screen. Values are multiplied by
SHOWINFO SCALE (16) to reduce aliasing, so field size is PITCH LENGTH *
SHOWINFO SCALE in x direction and PITCH WIDTH * SHOWINFO SCALE
in y direction.

Messageinfo

Information containing the messages of players and the referee.

typedef struct {

short board ;

char message[2048] ;

} msginfo_t ;

� board: indicates the type of message. A message with type MSG BOARD is a
message of the referee for the left text window, LOG BOARD are messages from
and to the players. (server/param.h)

MSG_BOARD 1

LOG_BOARD 2

� message: zero terminated string containing the message.

Drawinfo

Allows to specify information for the monitor to draw circles, lines or points.

5.3.2 Version 2

Soccerserver and logplayer send dispinfo t2 structs to the soccermonitor instead of
dispinfo t structs which is used in version 1. Dispinfo t2 contains a union with five
different types of information (the data structures are printed in appendix C):

62



5.4 Communication from Monitor to Server

� showinfo t2: information needed to draw the scene. It includes all information on
coordinates and speed of players and the ball, teamnames, scores, etc.

� msginfo t : contains the messages from the players and the referee shown in the
bottom windows. It also contains information on team’s images and information
on player exchanges.

– team graphic: The team graphic format requires a 256x64 image to be broken
up into 8x8 tiles and has the form

(team_graphic_{l|r} (<X> <Y> "<XPM line>" ... "<XPM line>"))

Where X and Y are the co-ordinates of the 8x8 tile in the complete 256x64
image, starting at 0 and ranging upto 31 and 7 respectively. Each XPM line
is a line from the 8x8 xpm tile.

– substitutions: substitutions are now explicitly recorded in the message board
in the form

(change_player_type {l|r} <unum> <player_type>)

� player type t: information describing different player’s abilities and tradeoffs

� server params t: parameters and configurations of soccerserver

� player params t: parameters of players

Which information is contained in the union is determined by the mode field.
NO INFO indicates no valid info contained (never sent by the server). BLANK MODE
tells the monitor to show a blank screen (used by logplayer) (server/param.h).

NO_INFO 0

SHOW_MODE 1

MSG_MODE 2

BLANK_MODE 4

PT_MODE 7

PARAM_MODE 8

PPARAM_MODE 9

5.4 Communication from Monitor to Server

The monitor can send to the server the following commands (in all commands,
<variable> has to be replaced with proper values):

(dispinit) | (dispinit version <version>)

sent to the server as first message to register as monitor (opposed to a player, that
connects on port 6000 as well) . ”(dispinit)” is for information version 1, while ”(dispinit
version 2)” is for version 2. You can change the version by setting the according monitor
parameter. (See 5.6 Parameters and Configurations)

63



5 The Soccer Monitor

(dispstart)

sent to start (kick off) a game, start the second half or extended time. Ignored, when
the game is already running.

(dispfoul <x> <y> <side>)

sent to indicate a foul situation. x and y are the coordinates of the foul, side is LEFT
(1) for a free kick for the left team, NEUTRAL (0) for a drop ball and RIGHT (-1) for
a free kick for the right team.

(dispdiscard <side> <unum>)

sent to show a player the red card (kick him out). side can be LEFT or RIGHT, unum
is the number of the player (1 - 11).

(dispplayer <side> <unum> <posx> <posy> <ang>)

sent to place player at certain position with certain body angle, side can be LEFT (1) or
RIGHT (-1), unum is the number of the player(1 - 11). Posx and posy indicate the new
position of the player, which will be divided by SHOWINFO SCALE. And ang indicate
the new angle of a player in degrees. This command is added in soccerserver 7.02.

(compression <level>)

The server supports compression of communication with its clients and monitors (since
version 8.03). A monitor can send the above compression request to the server to start
compressed communication. If the server is compiled without ZLib, the server will re-
spond with (warning compression unsupported) else if <level> is not a number be-
tween 0 and 9 inclusive, the server will respond with (error illegal command form)

else the server will respond with (ok compression <level>) and all subsequent mes-
sages to that client will be compressed at that level, until a new compression command
is received. If a compression level above zero is selected, then the monitor is expected
to compress its commands to the server. Specifying a level of zero turns off compression
completely (default).

5.5 How to record and playback a game

To record games, you can call server with the argument:

-record LOGFILE

(LOGFILE is the logfile name) or set the parameter in server.conf file:

record.log : on.

To specify the logfile version, you can call server with the argument:

-record_version [1/2/3]

64



5.5 How to record and playback a game

or set the parameter in server.conf file:

record_version : 2

The logplayer allows you to replay recorded games. Logfiles can be read in by the
logplayer and sent to the connected soccermonitors. To replay logfiles just call logplayer
with the logfile name as argument, start a soccermonitor and then use the buttons on
the logplayer window to start, stop, play backward, play stepwise.

5.5.1 Version 1 Protocol

Logfiles of version 1 (server versions up to 4.16) are a stream of consecutive dispinfo t
chunks. Due to the structure of dispinfo t as a union, a lot of bytes have been wasted
leading to impractical logfile sizes. This lead to the introduction of a new logfile format
2.

5.5.2 Version 2 Protocol

Version 2 logfile protocol tries to avoid redundant or unused data for the price of not
having uniform data structs. The format is as follows:

� head of the file:
the head of the file is used to autodetect the version of the logfile. If there is no
head, Unix-version 1 is assumed. 3 chars ’ULG’ : indicating that this is a Unix
logfile (to distinguish from Windows format)

� char version :
version of the logfile format

� body:
the rest of the file contains the data in chunks of the following format:

� short mode:
this is the mode part of the dispinfo t struct (see 5.5.1 Version 1) SHOW MODE
for showinfo t information MSG MODE for msginfo t information

– If mode is SHOW MODE, a showinfo t struct is following.

– If mode is MSG MODE, next bytes are
� short board: containing the board info
� short length: containing the length of the message (including zero termi-

nator)
� string msg: length chars containing the message

Other info such as DRAW MODE and BLANK MODE are not saved to logfiles. There
is still room for optimization of space. The team names could be part of the head of
the file and only stored once. The unum part of a player could be implicitly taken from
array indices.

65



5 The Soccer Monitor

Be aware of, that information chunks in version 2 do not have the same size, so you
can not just seek SIZE bytes back in the stream when playing logfiles backward. You
have to read in the whole file at once or (as is done) have at least to save stream positions
of the showinfo t chunks to be able to play logfiles backward.

In order to keep compatibility between different platforms, values are represented by
network byte order.

5.5.3 Version 3 Protocol

The version 3 protocol contains player parameter information for heterogenous players
and optimizes space. The format is as follows:

� head of the file:
Just like version 2, the file starts with the magig characters ’ULG’.

� char version :
version of the logfile format, i.e. 3

� body:
The rest of the file contains shorts that specify which data structures will follow.

– If the short is PM MODE,
� a char specifying the play mode follows.

This is only written when the playmode changes.

– If the short is TEAM MODE,
� a team t struct for the left side and
� a team t struct for the right side follow.

Team data is only written if a new team connects or the score changes.

– If the short is SHOW MODE,
� a short showinfo t2 struct specifying ball and player positions and states

follows.

– If the short is MSG MODE,
� a short specifying the message board,
� a short specifying the length of the message,
� a string containing the message will follow.

– If the short is PARAM MODE,
� a server params t struct specifying the current server parameters follows.

This is only written once at the beginning of the logfile.

– If the short is PPARAM MODE,
� a player params t struct specifying the current hetro player parameters.

This is only written once at the beginning of the logfile.

66



5.6 Settings and Parameters

– If the short is PT MODE,
� a player type t struct specifying the parameters of a specific player type

follows.

This is only written once for each player type at the beginning of the logfile.

Data Conversion:

� Values such as x, y positions are meters multiplied by SHOWINFO SCALE2.

� Values such as deltax, deltay are meters/cycle multiplied by SHOW-
INFO SCALE2.

� Values such as body angle, head angle and view width are in radians multiplied
by SHOWINFO SCALE2.

� Other values such as stamina, effort and recovery have also been multiplied by
SHOWINFO SCALE2.

5.6 Settings and Parameters

Soccermonitor has the following modifiable parameters:
“Used Value” is the current value of the parameter which is encoded in the moni-

tor.conf file. “Default Value” is the value encoded in the source files and will be used if
the user doesn’t give one.

You can specify parameters described in the table above in command line as following:
You can also modify the parameters by specifying them in configuration file monitor.conf.
In the configuration file, each line consists a pair of name and value of a parameter as
follows: ParameterName : Value Lines that start with ’#’ are comment lines.

5.7 What’s New

8.03 :

– The server supports compressed communication to monitors as described in
section 5.4

– Player substitution information is added to the message log

– Team graphics information is added to the message log

7.07 :

– The logplayer did not send server param, player param, and player type
messages. This has been fixed.

– The monitor would crash on some logfiles because stamina max seemed to be
set to 0. The monitor will no longer crash this way.

67



5 The Soccer Monitor

Parameter Name Used Value Default Explanation

host localhost Localhost hostname of soccerserver

port 6000 6000 port number of soccerserver

version 2 1 monitor protocol version

length magnify 6.0 6.0 magnification of size of field

goal width 14.02 7.32 goal width

print log off On flag for display log of communication
[on/off]

Log line 6 6 size of log window

Print mark on On flag for display mark on field [on/off]

mark file name mark.RoboCup.
grey.xbm

Mark.xbm mark on field use file name

ball file name ball-s.xbm Ball.xbm ball use file name

player widget size 9.0 1.0 size of player widget

player widget font 5x8 Fixed font(uniform number) of player widget

Uniform num pos x 2 2 position (X) of player uniform number

Uniform num pos y 8 8 position (Y) of player uniform number

Team l color Gold Gold Team L color

team r color Red Red Team R color

goalie l color Green Green Team L Goalie color

goalie r color Purple Purple Team R Goalie color

neck l color Black Black Team L Neck color

neck r color Black Black Team R Neck color

Goalie neck l color Black Black Team L Goalie Neck color

Goalie neck r color Black Black Team R Goalie Neck color

status font 7x14bold Fixed status line font [team name and
score,time,play mode]

popup msg off Off flag for pop up and down “GOAL!!” and
“Offside!” [on/off]

Goal label width 120 120 pop up and down “GOAL!!” label width

Goal label font -adobe-times-
bold-r-*-*-34-*-*-
*-*-*-*-*

Fixed pop up and down “GOAL!!” label font

Goal score width 40 40 pop up and down “GOAL!!” score width

Goal score font -adobe-times-
bold-r-*-*-25-*-*-
*-*-*-*-*

Fixed pop up and down “GOAL!!” score font

Offside label width 120 120 pop up and down “Offside!” label width

Offside label font -adobe-times-
bold-r-*-*-34-*-*-
*-*-*-*-*

Fixed pop up and down “Offside!” label font

eval off Off flag for evaluation mode

redraw player on Off always redraw player (needed for RH 5.2)

68



5.7 What’s New

7.05 :

– For quite some time, the logplayer has occasionally “skipped” so that cer-
tain cycles were never displayed by the logplayer. This seems to be caused
by the logplayer sending too many UDP packets for the monitor to re-
ceive. Therefore, a new parameter has been added to the logplayer ’mes-
sage delay interval’. After sending that many messages, the logplayer sleeps
for 1 microsecond, giving the monitor a chance to catch up. This is not a guar-
anteed to work, but it seems to help significantly. If you still have a problem
with the logplayer/monitor “skipping”, try reducing message delay interval
from it’s default value of 10. Setting message delay interval to a negative
number causes there to be no delay.

– The server used to truncate messages received from the players and coach to
128 characters before recording them in the logfile. This has been fixed.

7.04 :

– If a client connects with version > 7.0, all angles sent out by the server are
rounded instead of truncated (as they were previously) This makes the error
from quantization of angles (i.e. conversion of floats to ints) both uniform
throughout the domain and two sided. This change was also made to all
values put into the dispinfo t structure for the monitors and logfiles.

7.02 :

– A new command has been added to the monitor protocol:
(dispplayer side unum posx posy ang)
(contributed by Artur Merke)
See 5.4 Commands From Monitor to Server

7.00 :

– Included the head angle into the display of the soccermonitor. (source con-
tributed by Ken Nguyen)

– Included visualization effect when the player collided with the ball or the
player collided with another player. The monitor displays both cases with a
black circle around the player.

– Introduced new monitor protocol version 2. (See 5.5.2 Version 2 and 5.4
Commands From Monitor to Server)

– Introduced new logging protocol version 3. (See 5.5.3 Version 3 Protocol)

– Fixed logging so that the last cycle of a game is logged.

69



5 The Soccer Monitor

70



6 Soccer Client

6.1 Protocols

This section provides a brief overview of the protocol between the Soccer Client and the
Soccer Server. More details on these protocols can be found in the Soccer Server section.

Note that the init and reconnect commands should be send to the player’s UDP port
(default: 6000) of the Soccer Server machine, and after the response they sould be sent
to the port assigned to your player by the server, in a valid format. The server sends
the init response from this port (refer to section 1.2.1) . All the commands sent to or
received from the server are strings of common character and are in a pair of parenthesis.

6.1.1 Initialization and Reconnection

Every player wanting to connect to the server should introduce himself. This is like a
handshake and is done only at the beginning and optionally in the half time when you
want to reconnect.

Initialization

Your client should send an init command to the server in the following format :

(init TeamName [(version VerNum)] [(goalie)])

The goalie should include the ”(goalie)” in the init command to be allowed by the
server to catch the ball or do another special goalie action. Note there can only be one
or no goalie in each team. (You are not obliged to use a goalie)

The Server welcomes you with a response to your init message in the following format:

(init Side UniformNumber PlayMode)

Or by an error message (if there is an error, i.e. you have initiated more than two
team, more than 11 players in a team or more than one goalie in a team):

(error no more team or player or goalie)

Side is your team’s side of play, a character, l(left) or r(right). UniformNumber is the
player’s uniform number (the players of each team are known by their uniform number).
PlayMode is a string representing one of the valid play modes.

71



6 Soccer Client

If you connect to server with versions 7.00 or higher you will receive additional server
parameters, player parameters and player types information ( the last two are related
to the hetero players feature ). For the exact format refer to the appendix.

(server param Parameters . . . )

(player param Parameters . . . )

(player type id Parameters . . . )

Here the hand shaking is finished and your client is known as a valid player.

Reconnection

Reconnection is useful for changing the client program of a player without restarting the
game. It can only be done in a non-PlayOn playing mode (e.g. in the half time).

For reconnection you should send a reconnect command in the following format:

(reconnect TeamName UniformNumber)

And you will receive a response in the following format:

(reconnect Side PlayMode)

Or one of the following errors:

(can’t reconnect)

if the game is in the PlayOn mode.

(error reconnect)

when no client reconnected due to an error. You may also receive the following error
if the team name is invalid (error no more team or player or goalie)

Here again if you are connecting to the server with version 7.00 or higher you will
receive additional server parameters, player parameters and player types information.

Disconnection

Before you disconnect, you can send a bye command to the server. This command will
remove the player from the field.

(bye)

There will be no answers from the server.

72



6.1 Protocols

Version Control

Due to the progressive development of the Soccer Server, new features have been added
every year and this resulted in changes and improvements in the protocols to support
these features. In order to keep compatibility with the older clients and making it easier
to work with (specially for researchers), a system has been implemented for the Protocols
Version Control. Every client should tell the server the version of its communication
protocol in the init command so that the server would be able to send the messages in
the proper format.

But note that although the communication protocol remains unchanged, the judgment
and the simulation rules may change and this will affect the whole game.

6.1.2 Control Commands

During the game each player can send action commands. The server executes the com-
mands at the end of the cycle and simulates the next cycle regarding the received com-
mands and the previous cycles data.

Body Commands

All the playing and movement behaviors of the player are consisted from a few commands
known as body commands that are presented briefly below.

The results of these commands are a little complicated and depend on many simulation
factors. For the details of the execution of each command refer to the Soccer Server
Section.

(turn Moment)

The Moment is in degrees from −180 to 180. This command will turn the
player’s body direction Moment degrees relative to the current direction.

(dash Power)

This command accelerates the player in the direction of its body (not direc-
tion of the current speed). The Power is between minpower (used value:
−100) and maxpower (used value: 100).

(kick Power Direction)

Accelerates the ball with the given Power in the given Direction. The direc-
tion is relative to the the Direction of the body of the player and the power
is again between minpower and maxparam.

(catch Direction)

73



6 Soccer Client

Goalie special command: Tries to catch the ball in the given Direction relative
to its body direction. If the catch is successful the ball will be in the goalie’s
hand until kicked away.

(move X Y )

This command can be executed only before kick off and after a goal. It
moves the player to the exact position of X (between −54 and 54) and Y

(between −32 and 32) in one simulation cycle. This is useful for before kick
off arrangements.

Note that in each simulation cycle, only one of the above five commands can be
executed (i.e. if the client sends more than one command in a single cycle, one of them
will be executed randomly, usually the one received first)

(turn neck Angle)

This command can be sent (and will be executed) each cycle independently, along with
other action commands. The neck will rotate with the given Angle relative to previous
Angle. Note that the resulting neck angle will be between minneckang (default: −90)
and maxneckang (default: 90) relative to the player’s body direction.

Communication Commands

The only way of communication between two players is broadcasting of messages through
the say command and hearing through the hear sensor.

(say Message)

This command broadcasts the Message through the field, and any player near enough
(specified with audio cut dist, default: 50.0 meters), with enough hearing capacity will
hear the Message. The message is a string of valid characters.

(ok say)

Command succeeded.
In case of error there will be the following response from the Server:

(error illegal command form)

Misc. Commands

Other commands are usually of two forms:

� Data Request Commands

(sense body)

74



6.1 Protocols

Requests the server to send sense body information. Note the server sends sense
body information every cycle if you connect with version 6.00 or higher.

(score)

Request the server to send score information. The server’s reply will be in this
format:

(score Time OurScore OpponentScore)

� Mode Change Commands

(change view Width Quality)

Changes the view parameters of the player. Width is one of narrow, normal or
wide and Quality is one of high or low. The amount and detail of the information
returned by the visual sensor depends on the width of the view and the quality. But
note that the frequency of sending information also depends on these parameters
(e.g. if you change the quality from high to low, the frequency doubles, and the
time between two see sensors will be cut to half).

6.1.3 Sensor Information

Sensor information are the messages that are sent to all players regularly (e.g. each cycle
or each one and half a cycle). There is no need to send any message to the server to get
these information.

All the returned information of the sensors have a time label, indication the cycle
number of the game when the data have been sent (indicated by Time). This time is
very useful.

Visual Sensor

Visual Sensor is the most important sensor, and is a little bit complicated. This sensor
returns information about the objects that can be seen from the player’s view (i.e.
objects that are in the view angle and not very far).

The main format of the information is:

(see Time ObjInfo ObjInfo . . . )

The ObjInfos are of the format below:

(ObjName Distance Direction [DistChange DirChange [BodyFac-
ingDir HeadFacingDir]])

or

75



6 Soccer Client

(ObjName Direction)

Note that the amount of information returned for each object depends on its dis-
tance. The more distant the object is the less information you get. For more detailed
information regarding ObjInfo refer to Appendix.

ObjName is in one of the following formats:
(p [TeamName [Unum]])
(b)
(f FlagInfo)
(g Side)
p stands for player, b stands for ball, f stands for flag and g stands for goal.
Side is one of l for left or r for right. For more information on FlagInfo refer to

Appendix.

Audio Sensor

Audio sensor returns the messages that can be heard through the field. They may come
from the online coach, referee, or other players.

The format is as follows:

(hear Time Sender Message)

Sender is one of the followings:
self: when the sender is yourself.
referee: when the sender is the referee of the game.
online coach l or online coach r
Direction: when the sender is a player other than yourself the relative direction of the

sender is returned instead.

Body Sensor

Body sensor returns all the states of the player such as remaining stamina, view mode
and the speed of the player at the beginning of each cycle:

(sense body Time (view mode { high | low } { narrow | normal |
wide }) (stamina Stamina Effort) (speed Speed Angle) (head angle
Angle) (kick Count) (dash Count) (turn Count) (say Count)
(turn neck Count) (catch Count) (move Count) (change view
Count))

The last eight parameters are counters of the received commands. Use the counters
to keep track of lost or delayed messages.

6.2 How to Create Clients

This section provides a brief description to write a first-step program of soccer client.

76



6.2 How to Create Clients

6.2.1 Sample Client

The Soccer Server distribution includes a very simple program for soccer clients, called
sampleclient. It is under the ”sampleclient” directory of the distribution, and is
automatically compiled when you make the Soccer Server.

The sampleclient is not a stand-alone client: It is a simple ‘pipe’ that redirects
commands from its standard input to the server, and information from the server to its
standard output. Therefore, nothing happens when users invoke the sampleclient. The
users must type-in commands from keyboards, and read the sensor information displayed
on the terminal. (Actually it is impossible to read sensor information, because the server
sends about 17 sensor informations (see information and sense body information) per
second.)

The sampleclient is useful to understand what clients should do, and what the clients
will receive from the server.

How to Use sampleclient

Here is a typical usage of the sampleclient.

1. Invoke client under sampleclient directory of the Soccer Server.

% ./client SERVERHOST

Here, SERVERHOST is a hostname on which Soccer Server is running.

Then the program awaits user input.

If the Soccer Server uses an unusual port, for example 6005, instead of the standard
port (6000), the users should use the following form.

% ./client SERVERHOST 6005

2. Type in init command from the keyboard.

(init MYTEAMNAME (version 7))

Here MYTEAMNAME is a team name the users want to use.

Then a player appears on the field. In the same time, the program starts to
output the sensor information sent from the server to the terminal. Here is a
typical output:

send 6000 : (init foo (version 7))

recv 1567 : (init r 1 before_kick_off)

recv 1567 : (server_param 14.02 5 0.3 0.4 0.1 60 1 1 4000 45 0 0.3 0.5 ...

recv 1567 : (player_param 7 3 3 0 0.2 -100 0 0.2 25 0 0.002 -100 0 0.2 ...

recv 1567 : (player_type 0 1 45 0.4 5 0.006 0.3 0.7 0 0 1 0.6)

recv 1567 : (player_type 1 1.16432 28.5679 0.533438 8.33595 0.00733326 ...

recv 1567 : (player_type 2 1.19861 25.1387 0.437196 5.92991 0.00717675 ...

77



6 Soccer Client

recv 1567 : (player_type 3 1.04904 40.0956 0.436023 5.90057 0.00631769 ...

recv 1567 : (player_type 4 1.1723 27.7704 0.568306 9.20764 0.00746072 ...

recv 1567 : (player_type 5 1.12561 32.4392 0.402203 5.05509 0.00621539 ...

recv 1567 : (player_type 6 1.02919 42.0812 0.581564 9.53909 0.00688457 ...

recv 1567 : (sense_body 0 (view_mode high normal) (stamina 4000 1) ...

recv 1567 : (see 0 ((g r) 61.6 37) ((f r t) 49.4 3) ((f p r t) 37 27) ...

recv 1567 : (sense_body 0 (view_mode high normal) (stamina 4000 1) ...

...

The first line, “send 6000 : (init foo (version 7))”, is a report what
the client sends to the server. The second line,”recv 1567 : (init r 1

before kick off) is a report of the first response from the server. Here, the
server tells the client that the assigned player is the right side team (r), its uni-
form number is 1, and the current playmode is before kick off. The next 9
lines are server param and player param, which tells various parameters used in
the simulation. Finally, the server starts to send the normal sensor informations,
sense body and see. Because the server sends these sensor information every
100ms or 150ms, the client continues to output the information endlessly.

3. Type in move command to place the player to the initial position. The player
appears on a bench outside of the field. Users need to move it to its initial position
by move command like:

(move -10 10)

Then the player moves to the point (-10,10).

Because, as mentioned before, the client program outputs sensor information
endlessly, users can not see strings they type in. So, they must type-in commands
blindly. 1

4. Click ‘Kick-Off’ button on the Soccer Server. Then the game starts. The users
can see that the time data in each sensor information (the first number of see and
sense body information) are increasing.

5. After then, users can use any normal command, turn, dash, kick and so on. For
example, users can turn the player to the right by typing:

(turn 90)

The player can dash forward with full power by typing:

(dash 100)

1Users can redirect the output to any file or program. For example, you can redirect it to /dev/null

to discard the information by invoking “% client SERVERHOST > /dev/null”. Then, the users can
see the string they type-in.

78



6.2 How to Create Clients

When the player is near enough to the ball, it can kick the ball to the left with
power 50 by:

(kick 50 -90)

Note again that because of endless sensor output, users must type-in these com-
mands blindly.

Overall Structure of Sample Client

The structure of the sampleclient is simple. The brief process the client does is as
follows:

1. Open a UDP socket and connect to the server port. (init connection())

2. Enter the read-write loop (message loop), in which the following two processes
are executed in parallel.

� read user’s input from the standard input (usually a keyboard) and send it
to the server (send message()).

� receive the sensor information from the server (receive message()) and out-
put it to the standard output (usually a console).

In order to realize the parallel execution, sampleclient uses the select() function.
The function enables to wait for multiple input from sockets and streams in a single
process. When select() is called, it waits until one of the sockets and streams gets
input data, and tells which sockets or streams got the data. For more details of the
usage of select(), please refer to the man page or manual documents.

An important tip in the sampleclient is that the client must change the server’s port
number when it receives sensor informations from the server. This is because the server
assign a new port to a client when it receives an init command. This is done by the
following statement in ”client.c” (around line 147):

printf( "recv %d : ", ntohs(serv_addr.sin_port));

+ sock->serv_addr.sin_port = serv_addr.sin_port ;

buf[n] = ’\0’ ;

6.2.2 Simple Clients

In order to develop complete soccer clients, what users must do is to write code of a
‘brain’ part, which performs the same thing as users do with the sampleclient described
in the previous section. In other words, users must write a code to generate command
strings to send to the server based on received sensor information.

Of course it is not a simple task (so that many researchers tackle RoboCup as a
research issue), and there are various ways to implement it. Simply saying, in order to
develop player clients, users need to realize the following functions:

79



6 Soccer Client

[Sensing] To analyze sensor information: As shown in the previous section, the server
sends various sensor information in S-expressions. Therefore, a client needs to
parse the S-expressions. Then, the client must analyze the information to get a
certain internal representation. For example, the client needs to analyze a visual
information to estimate player’s location and field status, because the visual in-
formation only include relative locations of landmarks and moving objects on the
field.

[Action Interval] To control interval of sending commands: Because the server accepts
a body command (turn, dash and kick) per 100ms, the client needs to wait appro-
priate interval before sending a command.

[Parallelism] To execute sensor and action processes in parallel: Because the Soccer
Server processes sensor information and command asynchronously, clients need
to execute a sensor process, which deals with sensor information, and an action
process, which controls to send commands, in parallel.

[Planning] To make a plan of play: Using sensor information, the client needs to gen-
erate appropriate command sequences of play. Of course, this is the final goal of
developing soccer clients!!

Here are two simple examples of stand-alone players, sclient1 and sclient2, which
just chase the ball and kick it to the opponent goal. The sources are available from:

ftp://ci.etl.go.jp/pub/soccer/client/noda-client-2.0.tar.gz

In the examples, the functions listed above are realized as follows:

� For Sensing function, both examples use common facilities of class BasePlayer,
class FieldState, and estimatePos functions. By these facilities, the example
programs do:

– receive data from a socket connected with the server,

– parse the data as S-expression,

– interpret the expression into internal data format (class SensorInfo),

– and in the case the received data is visual sensor information, estimate player’s
and other object’s positions.

For more detail, please read the source code.

� For Action Interval and Parallelism functions, the two examples use different meth-
ods. The first example, sclient1 uses timeout of select() function. The second
one, sclient2 uses the multi-thread (pthread) facility. These are described below.

� For Planning function, both examples have very simple planners as follows:

– If the player does not see the ball in recent 10 steps, or if the player can not
estimate its position in recent 10 steps, it looks around.

80



6.2 How to Create Clients

– If the ball is in kickable area, it kicks the ball to the opponent goal.

– Otherwise, the player rushes to the ball (turns to the ball and dashes).

sclient1

The sclient1 uses the timeout facility of select() function to realize Action Interval
and Parallelism.

The key part of the program is in MyPlayer::run(). Here is the part of the source
code:

//----------------------------------------

// enter main loop

SocketReadSelector selector ;

TimeVal nexttic ; // indicate the timestamp for next command send

nexttic.update() ; // set nexttic to the current time.

while(True) {

//-------------------------------------------------

// setup selector

selector.clear() ;

selector.set(socket) ;

//-------------------------------------------------

// wait socket input or timeout (100ms) ;

Int r = selector.selectUntil(nexttic) ;

if(r == 0) { // in the of timeout. (no sensor input)

doAction() ; // enter action part

nexttic += TimeVal(0,100,0) ; // increase nexttimetic 100ms

} else { // got some input

doSensing() ; // enter sensor part

}

}

Here, class SocketReadSelector is a class to abstract facilities of select() and is
defined in ”itk/Socket.h”. In the line “Int r = selector.selectUntil(nexttic)

;”, the program awaits the socket input or timeout indicated by nexttic, which holds
the timestamp of the next tic (simulation step). The function returns 0 if timeout, or
the number of receiving sockets. In the case of timeout, the program calls doAction() in

81



6 Soccer Client

which a command is generated and sent to the server, or otherwise, it calls doSensing()
in which a sensor information is processed.

sclient2

The sclient2 uses the POSIX thread (pthread) facilities to realize Action Interval and
Parallelism.

The key part of the program is also in MyPlayer::run(). Here is the part of the
source code:

//----------------------------------------

// fork sensor thread

forkSensor() ;

//----------------------------------------

// main loop

while(True) {

if (!isBallSeenRecently(10)) {

//------------------------------

// if ball is not seen recently

// look around by (turn 60)

for(UInt i = 0 ; i < 6 ; i++) {

turn(60) ;

}

} else if (kickable()) {

...

}

}

The statement “forkSensor() ;” invokes a new thread for receiving and analyzing the
sensor information. (The behavior of the sensor thread are defined in ”SimpleClient.*”
and ”ThreadedClient.*”.) Then the main thread enters the main loop in which action
sequences of “chasing the ball and kick to the goal” are generated. Because Sensing
function is handled in the sensor thread in parallel, the main thread needs not take care
of the sensor input.

In order to keep action interval to be 100ms, the sclient2 waits for the next
simulation step by the function ThreadedPlayer::sendCommandPre() defined in
”ThreadedPlayer.cc” as follows:

Bool ThreadedPlayer::sendCommandPre(Bool bodyp) {

cvSend.lock() ;

82



6.2 How to Create Clients

if(bodyp) {

while(nextSendBodyTime.isFuture())

cvSend.waitUntil(nextSendBodyTime) ;

}

while(nextSendTime.isFuture()) {

cvSend.waitUntil(nextSendTime) ;

}

return True ;

} ;

In this function, MutexCondVar cvSend provide a similar timeout facility of select()
function used in sclient1 described above. (MutexCondVar is a combination of
condition variable (pthread cond t) and mutex (pthread mutex ), and is defined in
”itk/MutexCondVar.h”.) Because the function is called just before the player sends a
command to the server, and nextSendBodyTime is controlled to indicate the timestamp
of the next simulation step, the thread waits to send a command in the next tic.

6.2.3 Tips

Here we collect tips to develop soccer client programs.

� Debugging is the main problem in developing your own team. So try to find easy
debuging methods.

� A nice and simple way to see your program’s variables in a condition is to use
an abort() command or some asserts to force the program to core-dump; And
debug the core using gbd.

� Log every message received from the server and sent to the server. It is very useful
for debugging.

� Using ready to use libraries for socket and parsing problems is useful if you are a
beginner.

� Remember to pass the version number to the server in the init command. Although
it is optional, the default is 3.00 which usually is not desired.

� Even if the catch probability is 1.00 your catch command may be unsuccessful
because of errors in returned sensors about the positions.

� The first serious problem you may encounter is the timing problem. There are
many methods to synchronize your client’s time with server. One simple methods
is to use received sense body information.

83



6 Soccer Client

� Beware of slow networks. If your timing is not very powerful your client’s will
behave abnormaly in a crowded or slow network or if they are out of process
resources (e.g. you run many clients on one slow machine). In this case they may
see older positions and will try to act in these positions and this will result in
confusion (e.g. they will turn around themselves)

� The main usage of flags are for the player to find the position of himself in the field.
Your very first clients may ignore flags and play with relative system of positions.
But you may need a positioning module in the near future. There are many of the
in the ready to use libraries.

� The program should check the end of buffer in analyzing sensor information. The
sensor information uses S-expressions. But the expression may not be completed
when the sensor data is longer than the buffer, so that some closing parentheses are
lost. In this case, the program may core-dump if it parses the expression naively.

84



7 The coach

7.1 Introduction

Coaches are privileged clients used to provide assistance to the players. There are two
kinds of coaches, the online coach and the trainer. The latter is often called ’off-line
coach’ as well, but for clarity sake we will use the term ’trainer’.

7.2 Distinction between trainer and online coach

In general, the trainer can exercise more control over the game and may be used only
in the development stage, whereas the online coach may connect to official games. The
trainer is useful during development for such tasks as running automated learning or
managing games. The on-line coach is used during games to provide additional advice
and information to the players.

While developing player clients, for example when applying machine learning methods
to learn skills like dribbling or kicking, it might be useful to create training sessions in
an automated way. Therefore, the trainer has the following capabilities:

� It can control the play-mode.

� It can broadcast audio messages. Such a message can consist of a command or
some information intended for one or more of the player-clients. Its syntax and
interpretation are user-defined.

� It can move the players and the ball to any location on the field and set their
directions and velocities.

� It can get noise-free information about the movable objects.

For details on these capabilities see Section 7.3.

The online coach is intended to observe the game and provide advice and information
to the players. Therefore, it’s capabilities are somewhat limited:

� It can communicate with the players.

� It can get noise-free information about the movable objects.

85



7 The coach

To prevent the coach from controlling each client in a centralized way, communication
is restricted in several ways as described in Section 7.7. The online coach is a good tool
for opponent modelling, game analysis, and giving strategic tips to its teammates. Since
the coach gets a noise-free, global view over the field and has less real-time demands, it
is expected that it can spend more time deliberating over strategies. See Section 7.6 for
more details about the online coach.

7.3 Trainer

7.3.1 Connecting with and without the soccerserver referee

By default, an internal referee module is active within the soccerserver that controls the
match (see Section 4.7). If the trainer should have complete control over the match,
the soccerserver must be instructed to deactivate the referee module. This means for
example, that the play-mode will not change and players will not be moved back to their
sides after a goal. The trainer has to react to these events by its own rules.

The soccerserver must be informed at startup-time that a trainer-client will be used.
Add the option -coach1 to the command arguments of the soccerserver application when
a coach-client is used and the internal referee module of the server must be deactivated.
You can also add the line coach to the server.conf.

If you want to connect a trainer but let the server referee remain activated, add the
option -coach w referee to the command arguments of the server or add coach w referee

to the server configuration file.

If the server is invoked with one of the trainer modes, it prepares a UDP socket to
which the trainer-client can connect. The default port number is 60012. If a different
port number is needed the new port can be set by assigning its value to the coach port

parameter (see Section B.1).

7.4 Commands

The trainer and the online coach can use the following set of commands. The items are
listed in three categories. The first category includes commands that can be used only
by the trainer, the second includes commands that can be used also by the online coach
with certain restrictions, and the third lists commands that can be used by both trainer
and online coach.

7.4.1 Commands that can be used only by the trainer

� (change mode PLAY MODE)

1Note: The name of this parameter refers to the notion of ’offline-coach’, not to be mixed up with the
online-coach.

2The default port number for online coaches is 6002.

86



7.4 Commands

Change the play-mode to PLAY MODE. PLAY MODE must match one of the
modes defined in Section 4.7.1. Note that for most play-mode requests the soc-
cerserver will only change the play-mode. The position of the ball usually remains
unchanged, but in some cases players will be moved. E.g. in free-kick and kick-in
playmodes they will be moved away from the ball if they stand within a certain
radius. When changing to ‘before kick off’ they will be even moved to their
own side.

Possible replies by the soccerserver:

– (ok change mode)

The command succeeded.

– (error illegal mode)

The specified mode was not valid.

– (error illegal command form)

The PLAY MODE argument was omitted.

� (move OBJECT X Y [VDIR [VELX VELY ]])

This command will move OBJECT, which may be a player or the ball (see Sec-
tion sec:sensormodels for format information), to absolute position (X, Y). If VDIR
is specified, it will also change its absolute facing direction to VDIR (this only
matters for players). Additionally, if VELX and VELY are specified, the object’s
velocity will be set accordingly.

The trainer always uses left-hand coordinates.

Possible replies by the soccerserver:

– (ok move)

The command succeeded.

– (error illegal object form)

The OBJECT specification was not valid.

– (error illegal command form)

The position, direction, and/or velocity specification was not valid.

� (check ball)

Ask the soccerserver to check the position of the ball. Four positions are defined:

– in field

The ball is within the boundaries of the field.

– goal l

The ball is within the area assigned to the goal at the left side of the field.

– goal r

The ball is within the area assigned to the goal at the right side of the field.

87



7 The coach

– out of field

The ball is somewhere else.

Note that the states ‘goal l’ and ‘goal r’ do not necessary imply that the ball
actually crossed the goal line.

Possible replies by the soccerserver:

– (ok check ball TIME BALLPOSITION)

BALLPOSITION will be one of the states specified above.

� (start)

This commands starts the server, e.g. sets the play-mode to ‘kick off l’. This
essentially simulates pressing the kick off button on the monitor.

If the trainer does not send an init command, then the first commands of any type
received from the trainer will cause the server to start, e.g. set the play-mode to
‘kick off l’.

Possible replies by the soccerserver:

– (ok start)

The command succeeded.

� (recover)

This command resets players’ stamina, recovery, effort and hear capacity to the
values at the beginning of the game.

Possible replies by the soccerserver:

– (ok recover)

The command succeeded.

� (ear MODE)

It turns on or off the sending of auditory information to the trainer. MODE must
be one of on and off. If (ear on) is sent, the server sends all auditory information
to the trainer. See Table 7.3 for the format. If (ear off) is sent, the server stops
sending auditory information to the trainer.

Possible replies by the soccerserver:

– (ok ear on)

(ok ear off)

Both replies indicate that the command succeeded.

– (error illegal mode)

MODE did not match on or off.

– (error illegal command form)

The MODE argument was omitted.

88



7.4 Commands

7.4.2 Commands that can also be used by the online coach with certain
restrictions

� (init (version VERSION)) for the trainer and

� (init TEAMNAME (version VERSION)) for the online coach.

These commands tell the server which protocol version should be used to commu-
nicate with the trainer or coach. In the case of the online coach TEAMNAME has
to be specified to indicate which team the coach belongs to. Note that the coach
must connect after at least one player from its team.

The trainer is not required to issue an init command. However, it is recommended
that the trainer does so. Otherwise, the server will communicate with an older
protocol.

It should be mentioned that the default port is 6001 for the trainer and 6002 for
the online coach.

Possible replies by the soccerserver:

– (init ok)

The command succeeded in case of the trainer.

– (init SIDE ok)

The command succeeded in case of the online coach. SIDE is either ’l’ or ’r’.

� (say MESSAGE)

Note that the online coach can use this command with the same syntax, but there
are more restrictions. See Section 7.6.2 for details.

This command broadcasts the message MESSAGE to all clients in the case of the
trainer and only to teammates in the case of the online coach. For the trainer
the format of MESSAGE is the same as for a player-client. It must be a string
whose length is less than say coach msg size(see Section B.1 ) and it must consist
of alphanumeric characters and/or the symbols ().+*/?<>

The format which the players hear these messages can be found in Section 4.3.1.

Possible replies by the soccerserver:

– (ok say)

The command succeeded.

– (error illegal command form)

MESSAGE did not match the required format.

� (change player type TEAM NAME UNUM PLAYER TYPE) for the
trainer and

89



7 The coach

� (change player type UNUM PLAYER TYPE) for the online coach.

These commands can be used to change the heterogeneous player type (see Sec-
tion 4.6) of the player with the number UNUM of team TEAM NAME to the type
PLAYER TYPE. PLAYER TYPE is a digit between 0 and 6, where 0 denotes
the default player type. Note that in the case of the online coach the argument
TEAM NAME is missing, because it can only change player types in its own team.

The trainer does not have to comply to the rule that a maximum of three (specified
by subs max) players of each type can be on the field.

See Section 7.6.3 for details about the restrictions as to when and how the online
coach may substitute players.

Possible replies by the soccerserver to both trainer and online coach:

– (warning no team found)

The team does not exist.

– (error illegal command form)

If change player type is not followed by a string, two integers and a close
bracket.

– (warning no such player)

If there is no player with that uniform number on that team.

– (ok change player type TEAM UNUM TYPE)

The command succeeded.

Additionally, the soccerserver can send the following replies to the online coach:

– (warning cannot sub while playon)

If the play-mode is ‘play on’.

– (warning no subs left)

If the coach has already made its three (specified by subs max) subs for the
game.

– (warning max of that type on field)

If the player-type is not the default and there are three (specified by subs max)
of that type already on the field.

– (warning cannot change goalie)

If the coach tries to change the player type of the goalie.

The server responds to the teammates with:

– (change player type UNUM TYPE)

and opponents (including opponent coach) with:

– (change player type UNUM)

90



7.4 Commands

7.4.3 Commands that can be used by both trainer and online-coach

� (look)

This command provides information about the positions of the following objects
on the field:

– The left and right goals.

– The ball.

– All active players.

Note that the trainer and online coach for both sides receive left hand coordinates.
That is, the coaches receive information in the global coordinates that the left hand
team uses. In general, the players receive no global information (the one exception
being the move command), but it is common for teams to localize themselves so
that the negative x direction is towards the goal they defend.

Possible replies by the soccerserver:

– (ok look TIME (OBJ1 OBJDESC1) (OBJ2 OBJDESC2) . . . )

OBJj can be any of the objects mentioned above. See Section 4.3 for infor-
mation about the way the names for those objects are composed. OBJDESCj

have the following form:
� For goals : X Y
� For the ball: X Y DELTAX DELTAY

� For players : X Y DELTAX DELTAY BODYANGLE NECKANGLE
[POINTING DIRECTION]

The coordinates are always in left-hand orientation, no matter whether a trainer
or online coach is used.

If the trainer/coach should receive visual information periodically, use the (eye
on) command.

� (eye MODE)

MODE must be one of on and off. If (eye on) is sent, the server starts sending
(see global . . . ) information (see Section 7.5) every 100 ms (the interval is
specified by the send vi step parameter automatically to the client. If (eye off)
is sent, the server stops to send visual information automatically. In this case the
trainer/coach has to ask actively with (look), if it needs visual information.

Possible replies by the soccerserver:

– (ok eye on)

(ok eye off)

Both replies indicate that the command succeeded.

91



7 The coach

– (error illegal mode)

MODE id not match on or off.

– (error illegal command form)

The MODE argument was omitted.

� (team names)

This command makes the trainer/coach receive information about the names of
both teams and which side they are playing on.

Possible replies by the soccerserver:

– (ok team names [(team l TEAMNAME1) [(team r
TEAMNAME2)]])

Depending on whether the teams already connected no, one, or both team
name(s) will be supplied. Recall that the first team that connects will be on
the left side.

7.4.4 Commands that can be used only by the online-coach

� (team graphic (X Y ”XPM line” ... ”XPM line”))

The online coach can send teams-graphics as 256 x 64 XPM to the server. Each
team graphic-command sends a 8x8 tile. X and Y are the coordinates of this tile,
so they range from 0 to 31 and 0 to 7 respectively. Each XPM line is a line from the
8x8 XPM tile. Monitors that are connected to the server will receive the following
message on the message-board after each of the coach’s team graphic-commands:
(team graphic l—r (X Y ”XPM line” ... ”XPM line”))

Possible replies by the soccerserver:

– (ok team graphic X Y)

For each tile the server sends this string in order to signal its arrival.

7.5 Messages from the server

Apart from the replies to the commands mentioned above the server also sends some
messages to the trainer and online coach. If the clients connect to the server with a
version >= 7.0 (using the init-command), they will receive the following parameter
messages just like player clients:

� (server param . . . ) once

� (player param . . . ) once

� (player type . . . ) once for each player type

92



7.6 Online coach

See Section 4.2.2 for details on the parameter messages.

If the client chooses to receive visual information in each cycle by sending (eye on)
it will receive messages in the following format every 100 ms (send vi step):

(see global(OBJ1OBJDESC1)(OBJ2OBJDESC2) . . .)

OBJj denotes the name of the object. See Table 4.3 for information about the way the
names for those objects are composed. OBJDESCj have the following form:

� For goals : X Y

� For the ball: X Y DELTAX DELTAY

� For players : X Y DELTAX DELTAY BODYANGLE NECKANGLE [POINT-
ING DIRECTION]

The syntax is the same as in the reply to the (look) command, so coordinates are
always in left-hand orientation.

If the client wants to receive auditory information and sent (ear on) to the server, it
will receive all auditory information, from both the referees and all of the players. There
are two kinds of hear messages:

� (hear TIME referee MESSAGE) for all referee messages, such as “play on”
and “free kick left”. See Section 4.7 for a list of the valid messages from the referee.

� (hear TIME (p ”TEAMNAME” NUM) ”MESSAGE”) for all player mes-
sages. Note the quotes around the message.

See Section 4.3.1 for more details about the players speaking and listening abilities.

7.6 Online coach

7.6.1 Introduction

The online coach is a privileged client that can connect to the server in official games. It
has the capability of receiving global and noise-free information about the objects on the
field. In order to encourage research in this area there are special coach contests since
2001. This way, research groups that do not want to develop a team of player clients
can participate in the RoboCup challenge by focusing on the online coach. Additionally,
in order to make it possible to use a single coach with a variety of teams, a standard
coach language (CLang) has been developed that can be used to communicate with the
players.

See Section 7.4 and 7.5 for details about the commands that can be used by the online
coach and messages that will be sent by the server.

93



7 The coach

7.6.2 Communication with the players

Prior to version 7.00, the online coach could say say short (128 characters,
say coach msg size) alphanumeric (plus the symbols ().+*/?<> ) messages when the
play-mode is not ‘play on’. This type of message still exists as a “freeform” message,
but there are now other standard message types. Since version 8.05 there are also certain
intervalls in which freeform-messages can be sent even during ‘play on’. Every 600 cycles
(specified by freeform wait period) of ‘play on’ the coach can send freeform-messages
for 20 cycles (specified by freeform send period). For example, if the playmode changes
to ‘play on’ at cycle 420 and stays in ‘play on’ till the end of this example, the coach
can send freeform-messages between 1020 and 1040, 1620 and 1640, etc. The coach can
send say coach cnt max freeform messages per game. The length of these messages has
to be less than say coach msg size. If the game continues into extended time, the online
coaches are given an additional say coach cnt max messages to say every additional 6000
cycles (or whatever the normal length of a game is). Allowed messages are cumulative,
so if the coach does not use all its allowed messages, it can use them in the extended
time. The server will send (error said too many messages) if the coach tries to send
messages after it reached the maximum number.

It should be noted that freeform-messages are not allowed in coach-competition-games,
and are only supported by CLang for compatibility reasons.

In the standard coach language there are three other types of messages: rule-, define-,
and delete-messages. To prevent coaches from micro-controlling every single action of
the players communication is restricted in the following ways.

Every 300 cycles (specified by clang win size) the coach can send one of each. Note
that the number of allowed messages can be changed by setting the clang define win,
clang del win, and clang rule win parameters (see Section B.1). The messages are heard
by the players 50 (specified by clang mess delay) cycles later. If the play-mode is not
‘play on’, one (specified by clang mess per cycle) message is sent to the players in each
cycle, even if the delay time has not elapsed. Messages that are sent while the play mode
is not ‘play on’ do not count towards the message number restrictions. For example, if
the default values are used the coach can send one message per cycle during breaks that
will be heard by the players without delay. The server guarantees that messages of each
type will be sent to the players in the same order in which they were received from the
coach.

The language grammar developed below does not place restrictions on the length of
the messages which can be sent to the server. However, for very practical reasons, any
message in the standard language can not be longer than 8154 characters (this is so the
maximum message which should be sent to the player is 8K).

The first version of the coach language (Clang) was developped for server version 7.x.
For server version 8.x the language has been extended. Because of this, clients that want
to receive messages from their coach have to explicitly advise the server, which version
of CLang they support. This is done by sending

(clang (ver MIN MAX))

94



7.7 The standard coach language

where MIN and MAX are unsigned integers denoting the earliest and latest supported
version of CLang, respectively. Clients that do not send such a message will not receive
coach messages. The server is able to determine the version number of coach messages
and will filter out any messages that are not supported by the player. If a message has
been filtered out, the players will receive

(hear TIME online coach left—right (unsupported clang))

The coach will receive a message for each player which informs it about the supported
versions:

(clang (ver (PLAYER NAME) MIN MAX))

This means that you have to add the sending of (clang (ver 7 7)), if you use version
7 source code of players with newer server versions.

The standard coach language will be described in detail in Section 7.7.

7.6.3 Changing player types

Using the change player type-command (described in in Section 7.4) the online coach
can change player types unlimited times in ‘before kick off’ play-mode. Of course
these changes have to comply with the general rules about heterogeneous players (see
Section 4.6). After kick-off player types can be changed three (subs max) times during
play-modes that are not ‘play on’.

See the description of the change player type-command in Section 7.4 for details
about the possible replies from the server.

Note: A player client will be informed about substitutions that occurred before the
client connected by the message (change player type UNUM TYPE) for substi-
tutions in it own team and (change player type UNUM) for substitutions in the
opponent team.

7.7 The standard coach language

7.7.1 General properties

The standard coach language was developed to enable coaches to work together with
teams from different research groups. One of the design goals was to have clear semantics
that should prevent misinterpretation from both the players and the coach. The language
is based on low-level concepts that can be combined to construct new high level concepts.

Additionally, coaches can communicate a certain number of freeform messages that
may be arbitrary strings to the players during non-‘play on’-modes. See Section 7.6.2
for details. Be aware though, that freeform messages probably will not be understood
by other teams if you plan to use your coach with other teams.

The language description below is the improved and extended version of the language
developed by the community, as it is supported by server version 8.x. While the first

95



7 The coach

version of CLang is still supported by the server, its use is not encouraged. A complete
description of this first version can be found in the manual for server version 7. It is
hoped that all interested researchers will continue to develop CLang in order to make it
a useful tool for multi-agent research.

Some concepts were derived from Unilang [14] (e. g. definitions and several actions)
and SFL [12] (e. g. variables and point arithmetic).

Note that the server itself parses all the coach messages using flex and bison (the GNU
replacements for lex and yacc) and constructs a simple representation based on a C++
class hierarchy. Please feel free to use and modify this code from the server to handle
the parsing of the coach messages. In particular, look at the coach_lang* files.

7.7.2 Example Language Utterance

The general idea of CLang is to describe tactics and behaviours as rules which map
directives to conditions. Each rule consists of a component which denotes a situation
(the condition) and a list of directives which are applicable if the situation-description
is true in the given worldstate. Rules can either be used as advise which tells the player
how to act or as information which for example describes how the opponent behaves in
certain situations. In CLang rules also have an ID, so that the coach can refer to them
later.

A simple rule which advises the player number 5 to pass to his teammate with the
number 11 if it has the ball and is in the middle of the field can be defined as follows:

(define

(definerule

MyRule1

direc

(

(and

(bowner our 5)

(bpos (rec (pt -10 -10) (pt 10 10)))

)

(do our 5 (pass 11))

)

)

)

Each of the primitives will be explained in detail later. For now it should suffice to
get the idea that the rule is assigned the ID ”MyRule1” and is defined as a directive (as
compared to a model-rule which describes observed behavior). bowner determines that
player 5 of the coach’s team is the ballowner. bpos specifies the ballposition by means
of a rectangle. Finally, the directive advises player number 5 to pass to his teammate
11. In CLang lingo (pass 11) is an action and (do our 5 (pass 11)) is a directive.

Rules are off by default. So the coach has to turn them off by sending a message like
(rule (on MyRule1))

96



7.7 The standard coach language

Now the language concepts will be looked at in more detail.

7.7.3 Overview of the five message types

There are four types of coach messages in the standard coach language: Rule, Define,
Delete, and Freeform. Their purpose and format will be described in this section, and
some examples will be given.

In the following format description elements in capitals denote non-terminal symbols
which are defined in section 7.7.7.

Define-message: Define messages are the most complex messages in CLang, because
they define and combine the components which the coach wants to share with
the players, like conditions, directives, regions, actions, and rules. By defining a
component its is assigned an ID which the coach can use to refer to it in later
messages.

Conditions: Format for defining a condition: (definec CLANG STR CONDI-
TION)

Example: (definec ”Defense” (bowner opp 0)) This defines the condition
in which any player of the opponent team owns the ball.

Actions: Format for defining an action: (definea CLANG STR ACTION)

Example: (definea ”Pass7” (pass 7))

Directives: Format for defining a directive: (defined CLANG STR DIREC-
TIVE)

Example: (defined ”Pass10to11” (do our 10 (pass 11))) This directives
denotes player 10 passing to player 11.

Regions: Format for defining a region: (definer CLANG STR REGION)

Example: (defined ”OURHALF” (rec (pt -52.5 -34) (pt 0 34))) A
rectangle which covers the team’s own half is defined.

Rules: Format for defining a rule: (definerule CLANG VAR model RULE)
or (definerule CLANG VAR direc RULE)

Example: (definerule Rule1 direc ((playm bko) (do our 7 (pos (pt
-20 20))))) This rule states that player 7 should position itself at the given
point before kick-off.

See also section 7.7.4 about defining rules.

Rule-message: Rule messages are used to turn previously defined rules on or off. After
defining a rule, it is off by default.

97



7 The coach

Format: (rule ACTIVATION LIST)

Example: (rule (on rule2) (off rule1))

Delete-message: The delete message tells a player that a rule will not be used again and
can be removed from the memory. This also means that after deleting a rule, its
ID should not appear in other nested rule-definitions (see section 7.7.4) anymore.

Format: (delete ID LIST)

Examples: (delete Rule1) (delete (Rule1 Rule2)) (delete all) Deletes one
rule, a list of two rules, or all rules, respectively.

Freeform-message: Free form messages are arbitrary strings and can be sent according
to the afore-mentioned restrictions in section 7.6.2.

Format: (freeform ”STRING”)

Note that STRING must be included in quotes.

7.7.4 Defining rules

The definition of rules is an important part in CLang, so it will be looked at in more
detail in this section. Remember that a rule consists of a condition and a list of directives,
which again contain actions.

As stated above the format for defining a rule is (definerule DEFINE RULE) using
the following components:

<DEFINE_RULE> : <CLANG_VAR> model <RULE>

| <CLANG_VAR> direc <RULE>

<RULE> : (<CONDITION> <DIRECTIVE_LIST>)

| (<CONDITION> <RULE_LIST>)

| <ID_LIST>

Each rule is assigned a name complying the definition of CLANG VAR. Addition-
ally, rules are in one of two modes, either model which states that the rule is a description
of observed behavior, or direc which states that the rule is a directive to behave in a
certain way.

Now, the actual content of a rule can be specified in several ways:

� (CONDITION DIRECTIVE LIST)

This is the straight-forward way. The example in section 7.7.3 complies to this
format. The CONDITION denotes a situation, and DIRECTIVE LIST denotes
the appropriate directives. Note that the list can contain directives for one, several,
or all players, or even several directives for the same player. In the latter case it is
up to the player to decide which directive is to be followed.

98



7.7 The standard coach language

� (CONDITION RULE LIST)

This is a very powerful format for combining rules to larger tactics. Since each
rule in RULE LIST already contains a condition, a definition of this form results
in nested rules. It can for example be used to activate several rules simultaneously.
Suppose, there are already several rules specifying the home positions of the de-
fenders: pos2a and pos2b for player 2, and pos3a and pos3b for player 3. Now, by
using

(definerule defenseformation direc ((bowner our {0}) (pos2a pos3a)))

and

(definerule offenseformation direc ((bowner opp {0}) (pos2b pos3b)))

it can be specified when the rules are supposed to be active (depending on which
team owns the ball). For evaluating such definitions, the outer condition is assumed
to be distributed into the inner conditions, being combined with logical and. E. g.
assume that pos2a was specified as

((time > 20) (do our {2} (pos (pt -40 10))))

then the above definition would create

((and (bowner our {0}) (time > 20)) (do our {2} (pos (pt -40 10))))

� ID LIST

Similar to the above format, this way several existing rules can be combined.
Suppose, there have been defined two rules:

(definerule position2 direc ((true) (home (pt -40 -10))))

(definerule mark2 direc ((bowner opp {10}) (mark 10)))

These can be combined into a behavior for player 2:

(definerule player2 direc (position2 mark2))

7.7.5 Semantics and syntax details of the components

In the following the syntax and semantics of the non-terminal symbols which were used
in the format outlines above will be described.

Rules have a condition on the left-hand side, and a set of actions on the right hand
side. Thus each rule can be thought of as essentially specifying an if-then statement:

if CONDITION

then { DIRECTIVE_1 DIRECTIVE_2 ... }

In the player’s programs, it is easy to represent all the advice given by the coach as
a small rule-base. Following the advice would be easy by matching the current world
state against the condition, and trying to act on the directives. Note: If more than one
condition applies to the current situation and the corresponding directives differ, it is
up to the player to choose the directive. Note that the player should also exercise some

99



7 The coach

discretion in following directives. For example, if the only directive which matches is to
pass to player 5, but player 5 is well-covered by opponents, the player with the ball may
choose to ignore the directive for now.

� Conditions:

A condition is made from the logical connectives over atomic state description
propositions:

– (true)

Always true.

– (false)

Always false.

– (ppos TEAM UNUM SET INT INT REGION)

The first INT is the MINIMUM and the second is the MAXIMUM At least
MINUMUM but no more than MAXIMUM players in UNUM SET from team
TEAM are in region REGION. Regions and unum sets are more precisely
defined below. TEAM is either ”our” or ”opp”. There is no ambiguity since
the coach can only be heard by its own players.

– (bpos REGION)

The ball is in region REGION.

– (bowner TEAM UNUM SET)

The ball is controlled by some player in UNUM SET of team TEAM. The
ball-owner is the last player that had ball contact (i.e. the ball was in his
kickable area), even if the ball left his control after that.

– (playm PLAY MODE)

The play-mode is PLAY MODE. See Section 7.7.7 for the valid values of
PLAY MODE.

– (COND COMP)

The time, goal-difference, number of own or opponent goals can be compared
with constants, using the operators < > <= == ! = >=.

Examples: (time > 20) (2 >= opp goals)

– unum CLANG VAR UNUM SET

If CLANG VAR is instantiated, it is checked whether the unum denoted by
the variable CLANG VAR is in the set UNUM SET. If the variable is still
unbound, it is bound to the specific set.

The logical connectives are:

– (and CONDITION1 CONDITION2 . . . CONDITIONn)

– (or CONDITION1 CONDITION2 . . . CONDITIONn)

– (not CONDITION)

100



7.7 The standard coach language

An example condition: ”When opponent player 3 is in region X and controls the
ball” would be

(and (ppos opp {3} X) (bowner opp {3}))

� Directives:

Directives are basically lists of actions for individual sets of players and come in
two forms:

– (do TEAM UNUM SET ACTION LIST) (affirmative mode: players
should take thess actions)

– (dont TEAM UNUM SET ACTION LIST) (negative mode: players
should avoid taking these actions)

If the actions in the affirmative mode are mutually exclusive, it is up to the player to
decide which one is to be followed. In rules which are in the model-mode, directives
convey knowledge about the plans/behaviors of the players or their opponents.

� Actions:

– (pos REGION)

The player should position itself in REGION.

– (home REGION)

The player’s default position should be in REGION. This directive is intended
largely to specify formations for the team.

– (mark UNUM SET)

The player should mark some opponent player in UNUM SET.

– (markl REGION)

The passing lane from the current ball position to REGION should be marked.

– (markl UNUM SET)

The passing lane from the current ball position to some opponent player in
UNUM SET should be marked.

– (oline REGION)

The offside-trap line for the player/team should be set at REGION.

– (htype TYPE)

The player is of heterogeneous type TYPE. The TYPE number is as described
in Section 4.6. A value of -1 should clear the player’s idea of the heterogeneous
type.

– (pass REGION)

The ball should be passed to some player in REGION.

– (pass UNUM SET)

The ball should be passed to some player in UNUM SET.

101



7 The coach

– (dribble REGION)

The ball should be dribbled to REGION.

– (clear REGION)

The ball should be cleared from REGION, which means to shoot the ball to
a point outside of REGION.

– (shoot)

The ball should be shot at the goal.

– (hold)

The player should hold the ball, i. e. stand at his position and keeping the
ball away from opponents.

– (intercept)

The player should go to the ball and try to control it.

– (tackle UNUM SET)

The player should tackle some player in UNUM SET (or the ballowner?).

� Regions:

Any REGION token can be any of the following:

– a POINT

This is defined more precisely below

– (rec POINT1 POINT2)

Defines a rectangle with its sides parallel to the pitch-lines, respectively.

– (tri POINT1 POINT2 POINT3)

Defines a triangle made up of the given points.

– (arc POINT RADIUS SMALL RADIUS LARGE ANGLE BEGIN
ANGLE SPAN)

Defines a donut-arc: the area between two circles co-centered at point POINT,
having the given radii, with the arc defined starting at the beginning angle
and covering the spannign angle. For example a, a circle with radius r could
be defined as “(arc (pt 0 0) 0 r 0 360)”, and a U-shaped region could be
defined as “(arc (pt 0 0) 5 10 0 180)”

– (null)

The null (empty) region.

– (reg REG1 REG2 . . . REGn)

Defines a region made up from the union of the given regions.

A POINT is any of the following:

– (pt X Y)

X and Y are reals and in global coordinates. This is the absolute position
(X,Y);

102



7.7 The standard coach language

– (pt ball) The current global position of the ball.

– (pt TEAM UNUM) The current position of player number UNUM on team
TEAM (either ’our’ or ’opp’). Remember that UNUM can be a variable.

– (POINT1 OP POINT2)

This arithmetically combines two points to a new point. POINTi can be
made up of arithmetic operators, resulting in a recursive structure.

The operators are defined in the natural way, for example:

(pt X1 Y1) OP (pt X2 Y2) = (pt X1OPX2 Y1OPY2 )

where OP is one of + − ∗ /

The use of these relative points makes it easy to express ideas such as “Move to
the ball”, “If there are 2 teammates within 10m of the ball”, etc.

Remember that the online coach receives visual information alway in left-hand
orientation, no matter which side its team plays on. Yet, when sending messages
to a team that plays on the right side, the coach must use right-hand orientation
in the messages. Transforming coordinates from left- to right-hand orientation is
done by negating them.

� UNUM SETS:

Unum sets are sets of player numbers. These are sets in the sense that order does
not matter and may be changed by the server. If 0 is included anywhere in the
set, then the set contains all players 1 - 11. The set can contain variables.

Format: { NUM1 NUM2 . . . NUMn }

� Variables:

Technically, everywhere where UNUM occurs, a variable can be used. Yet, it is
important to make sure that the variables are instantiated or ground. The scope
is the innermost spanning rule, e.g. in

1 (definerule rule1 model

2 (bowner our {0})

3 ((true) (do our {5} (mark 11)))

4 ((bowner our {X}) (do our {X} (shoot)))

5 )

the scope of X is the complete line 4. This also shows how variables can be instan-
tiated: Only in conditions which have UNUMs as fixed argument (i. e. UNUMs
in POINTs do not count as condition UNUMS) a variable may be introduced. Its
value is set by checking which unums make the condition true. In the example X
is instantiated with the uniform number of the ballowner. In a condition like ppos
it can be necessary to instantiate the variable as a set of unums:

103



7 The coach

(ppos our {X} 1 11 REGION)

In this example X has to be instantiated as the set of unums which are in REGION.
Note that an instantiation as in

(ppos our {5} 1 1 (rec (pt ball) (pt our {X}))) is not supported.

7.7.6 Further resources

� The CLang Corpus contains examples of actual CLang messages:

http://www-2.cs.cmu.edu/˜ pfr/soccer/clang corpus.html

� The Multi-Agent Modeling Special Interest Group (MAMSIG) provides binaries
and sources of coachable teams and online coaches:

http://www.cl-ki.uni-osnabrueck.de/˜ tsteffen/mamsig

� The Coach-mailing-list discusses Clang details, competition rules, and coaching
methods:

http://robocup.biglist.com/coach-l/

7.7.7 Syntax

The complete grammar of the standard coach language:

<MESSAGE> : <FREEFORM_MESS> | <DEFINE_MESS> | <RULE_MESS> | <DEL_MESS>

<RULE_MESS> : (rule <ACTIVATION_LIST>)

<DEL_MESS> : (delete <ID_LIST>)

<DEFINE_MESS> : (define <DEFINE_TOKEN_LIST>)

<FREEFORM_MESS> : (freeform <CLANG_STR>)

<DEFINE_TOKEN_LIST> : <DEFINE_TOKEN_LIST> <DEFINE_TOKEN>

| <DEFINE_TOKEN>

<DEFINE_TOKEN> : (definec <CLANG_STR> <CONDITION>)

| (defined <CLANG_STR> <DIRECTIVE>)

| (definer <CLANG_STR> <REGION>)

| (definea <CLANG_STR> <ACTION>)

| (definerule <DEFINE_RULE>)

<DEFINE_RULE> : <CLANG_VAR> model <RULE>

| <CLANG_VAR> direc <RULE>

104



7.7 The standard coach language

<RULE> : (<CONDITION> <DIRECTIVE_LIST>)

| (<CONDITION> <RULE_LIST>)

| <ID_LIST>

<ACTIVATION_LIST> : <ACTIVATION_LIST> <ACTIVATION_ELEMENT>

| <ACTIVATION_ELEMENT>

<ACTIVATION_ELEMENT> : (on|off <ID_LIST>)

<ACTION> : (pos <REGION>)

| (home <REGION>)

| (mark <UNUM_SET>)

| (markl <UNUM_SET>)

| (markl <REGION>)

| (oline <REGION>)

| (htype <INTEGER>)

| <CLANG_STR>

| (pass <REGION>)

| (pass <UNUM_SET>)

| (dribble <REGION>)

| (clear <REGION>)

| (shoot)

| (hold)

| (intercept)

| (tackle <UNUM_SET>)

<CONDITION> : (true)

| (false)

| (ppos <TEAM> <UNUM_SET> <INTEGER> <INTEGER> <REGION>)

| (bpos <REGION>)

| (bowner <TEAM> <UNUM_SET>)

| (playm <PLAY_MODE>)

| (and <CONDITION_LIST>)

| (or <CONDITION_LIST>)

| (not <CONDITION>)

| <CLANG_STR>

| (<COND_COMP>)

| (unum <CLANG_VAR> <UNUM_SET>)

| (unum <CLANG_STR> <UNUM_SET>)

<COND_COMP> : <TIME_COMP>

105



7 The coach

| <OPP_GOAL_COMP>

| <OUR_GOAL_COMP>

| <GOAL_DIFF_COMP>

<TIME_COMP> : time <COMP> <INTEGER>

| <INTEGER> <COMP> time

<OPP_GOAL_COMP> : opp_goals <COMP> <INTEGER>

| <INTEGER> <COMP> opp_goals

<OUR_GOAL_COMP> : our_goals <COMP> <INTEGER>

| <INTEGER> <COMP> our_goals

<GOAL_DIFF_COMP> : goal_diff <COMP> <INTEGER>

| <INTEGER> <COMP> goal_diff

<COMP> : < | <= | == | != | >= | >

<PLAY_MODE> : bko | time_over | play_on | ko_our | ko_opp

| ki_our | ki_opp | fk_our | fk_opp

| ck_our | ck_opp | gk_opp | gk_our

| gc_our | gc_opp | ag_opp | ag_our

<DIRECTIVE> : (do|dont <TEAM> <UNUM_SET> <ACTION_LIST>)

| <CLANG_STR>

<REGION> : (null)

| (arc <POINT> <REAL> <REAL> <REAL> <REAL>)

| (reg <REGION_LIST>)

| <CLANG_STR>

| <POINT>

| (tri <POINT> <POINT> <POINT>)

| (rec <POINT> <POINT>)

<POINT> : (pt <REAL> <REAL>)

| (pt ball)

| (pt <TEAM> <INTEGER>)

| (pt <TEAM> <CLANG_VAR>)

| (pt <TEAM> <CLANG_STR>)

| (<POINT_ARITH>)

<POINT_ARITH> : <POINT_ARITH> <OP> <POINT_ARITH>

| <POINT>

106



7.7 The standard coach language

<OP> : + | - | * | /

<REGION> : <REGION_LIST> <REGION>

| <REGION>

<UNUM_SET> : { <UNUM_LIST> }

<UNUM_LIST> : <UNUM>

| <UNUM_LIST> <UNUM>

<UNUM> : <INTEGER> | <CLANG_VAR> | <CLANG_STR>

<ACTION_LIST> : <ACTION_LIST> <ACTION>

| <ACTION>

<DIRECTIVE_LIST> : <DIRECTIVE_LIST> <DIRECTIVE>

| <DIRECTIVE>

<CONDITION_LIST> : <CONDITION_LIST> <CONDITION>

| <CONDITION>

<RULE_LIST> : <RULE_LIST> <RULE>

| <RULE>

<ID-LIST> : <CLANG_VAR>

| (<ID_LIST2>)

| all

<ID-LIST2> : <ID_LIST2> <CLANG_VAR>

| <CLANG_VAR>

<CLANG_STR> : "[0-9A-Za-z\(\)\.\+\-\*\/\?\<\>\_ ]+"

<CLANG_VAR> : [abe-oqrt-zA-Z_]+[a-zA-Z0-9_]*

107



7 The coach

Parameter name Used
value

Default
value

Explanation

coach port 6001 6001 The port number the trainer connects to.
say msg size 512 256 Maximum length of a freeform message a

player, trainer, or coach can say.
say coach cnt max 128 128 Upper limit of freeform messages an online

coach can say
send vi step 100 100 Interval of online coach’s look.
clang win size 100 100 Number of cycles that lie between online coach

messages
clang define win 1 1 Number of define messages that can be sent in

the aforementioned interval.
clang rule win 1 1 Number of rule messages that can be sent in

the aforementioned interval.
clang del win 1 1 Number of delete messages that can be sent in

the aforementioned interval.
clang mess delay 50 50 Number of cycles messages from the online

coach will be delayed.
clang mess per cycle 1 1 Number of messages that will be sent to the

players during non-play on modes.

108



7.7 The standard coach language

From trainer to server From server to trainer

(init (version VERSION))
VERSION ::= a real number

trainer: (init ok)

(change mode PLAY MODE)
PLAY MODE ::= one of the play-modes

(ok change mode)
(error illegal mode)
(error illegal command form)

(move OBJECT X Y
[VDIR [DELTA X DELTA Y]])

OBJECT ::= One of object names
X ::= -52–52
Y ::= -32–32
VDIR ::= -180–180
DELTA X, DELTA Y ::= [float]

(ok move)
(error illegal object form)
(error illegal command form)

(check ball) (ok check ball TIME BPOS)
TIME ::= sim. time of server
BPOS ::= in field |

goal SIDE |
out of field

SIDE ::= l | r

(start) (ok start)
(recover) (ok recover)

(change player type
TEAM NAME UNUM
PLAYER TYPE)

TEAM NAME ::= string
UNUM ::= 1–11
PLAYER TYPE ::= 0–6

(warning no team found)
(error illegal command form)
(warning no such player)
(ok change player type

TEAM UNUM TYPE)

(ear MODE)
MODE ::= on | off

(ok ear on)
(ok ear off)
(error illegal mode)
(error illegal command form)

Table 7.1: Trainer Interactions with the Server

109



7 The coach

From online coach to server From server to online coach

(init TEAMNAME
(version VERSION))

VERSION ::= a real number
TEAMNAME ::= string

(init SIDE ok)
SIDE ::= l | r

(change player type
UNUM PLAYER TYPE)

UNUM ::= 1–11
PLAYER TYPE ::= 0–6

(warning no team found)
(error illegal command form)
(warning no such player)
(ok change player type

TEAM UNUM TYPE)
(warning cannot sub while playon)
(warning no subs left)
(warning max of that type on field)
(warning cannot change goalie)

Table 7.2: Online Coach Interactions with the Server

110



7.7 The standard coach language

From client to server From server to client

(say MESSAGE)
(see Section 7.4.2)

(ok say)
(error illegal command form)

(look) (ok look TIME
(OBJ1 OBJDESC1)
(OBJ2 OBJDESC2) . . . )

OBJj ::= object name
(see Section 4.3

OBJDESCj ::= X Y |
X Y DELTAx DELTAy |
X Y DELTAx DELTAy

BODYANG NECKANG

(eye MODE)
MODE ::= on | off

(ok eye on)
(ok eye off)
(error illegal mode)
(error illegal command form)

This message is sent automatically ev-
ery send vi step milliseconds when the
coach/trainer eye is on (see the “eye”
commands below).

(see global TIME
(OBJ1 OBJDESC1)
(OBJ2 OBJDESC2) . . . )

The trainer must use the ‘ear’ command
to get these messages. The online coach
always gets these messages.

(hear TIME referee MESSAGE)
(hear TIME

(p ”TEAMNAME” NUM)
”MESSAGE”)

TIME ::= time message was sent
TEAMNAME ::= string
NUM ::= 1–11
MESSAGE ::= string

(team names) (ok team names
[(team l TEAMNAME1)
[(team r TEAMNAME2)]])

Table 7.3: Server Interactions with Trainer/Coach
111



7 The coach

112



8 References and Further Reading

8.1 General papers

[1] Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup
II. LNAI 1604. Springer, Berlin, Heidelberg, New York, 1999.

[2] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. AT Humboldt —
Development, Practice and Theory. In Hiroaki Kitano, editor, RoboCup-97: Robot
Soccer World Cup I, volume 1395 of Lecture Notes in Computer Science, pages
357–372. RoboCup Federation, Springer–Verlag, 1997.

[3] Silvia Coradeschi, Tucker Balch, Gerhard Kraetzschmar, and Peter Stone, editors.
Team Descriptions Simulation League RoboCup’99, Stockholm, Sweden, July 1999.

[4] John F. Kennedy. Urgent National Needs. Congressional Record – House (25 may
1961), 1961.

[5] Hiroaki Kitano, editor. Proceedings of the IROS-96 Workshop on RoboCup, Osaka,
Japan, November 1996.

[6] Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer Verlag,
Berlin, 1998.

[7] Hiroaki Kitano, Minoru Asada, Yasou Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
RoboCup: The Robot World Cup Initiative. In Proc. of IJCAI-95 Workshop on
Entertainment and AI/Alife, pages 19–24, 1995.

[8] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
RoboCup: The robot world cup initiative. In W. Lewis Johnson and Barbara
Hayes-Roth, editors, Proceedings of the First International Conference on Au-
tonomous Agents (Agents ’97), pages 340–347, New York, 5–8 1997. ACM Press.

[9] Stefan Lanser, Christoph Zierl, Olaf Munkelt, and Bernd Radig. MORAL - A
Vision-based Object Recognition System for Autonomous Mobile Systems. In 7th

International Conference on Computer Analysis of Images and Patterns, Kiel,
pages 33–41. Springer–Verlag, September 1997.

[10] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler. Co-
evolving Soccer Softbot Team Coordination with Genetic Programming. In Hiroaki

113



8 References and Further Reading

Kitano, editor, Proceedings of the RoboCup−97 Workshop at the 15th International
Joint Conference on Artificial Intelligence (IJCAI97), pages 115–118, 1997.

[11] Alan Mackworth. On Seeing Robots, chapter 1, pages 1–13. World Scientific Press,
1993.

[12] Andreas G. Nie, Angelika Honemann, Andres Pegam, Collin Rogowski, Leonhard
Hennig, Marco Diedrich, Philipp Hugelmeyer, Sean Buttinger, and Timo Steffens.
the osnabrueck robocup agents project. Technical report, Institute of Cognitive
Science, Osnabrueck, 2001.

[13] Itsuki Noda, Shoji Suzuki, Hitoshi Matsubara, Minoru Asada, and Hiroaki Kitano.
Overview of RoboCup-97. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer
World Cup I, pages 20–41. Springer–Verlag, 1997.

[14] Luis Paulo Reis and Nuno Lau. Coach unilang - a standard language for coaching
a (robo)soccer team. In Andreas Birk, Silvia Coradeshi, and Satoshi Tadokoro,
editors, RoboCup-2001: Robot Soccer World Cup V. Springer, Berlin, 2002. (to
appear).

[15] The goals of RoboCup. by RoboCup Federation on http://www.robocup.org/

overview/22.html, 2000. Verified on 12th February 2001.

[16] Peter Stone, Tucker Balch, and Gerhard Kraetszchmar, editors. RoboCup-2000:
Robot Soccer World Cup IV, Berlin, 2001. Springer Verlag. To appear.

8.2 Doctoral Theses

[17] Klaus Dorer. Motivation, Handlungskontrolle und Zielmanagement in autonomen
Agenten. PhD thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, December
1999. (German only).

[18] Johan Kummeneje. RoboCup as a Means to Research, Education, and Dissemina-
tion. Ph. Lic. Thesis, March 2001. Department of Computer and Systems Sciences,
Stockholm University and the Royal Institute of Technology.

[19] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis, School of
Computer Science, Carnegie Mellon University, December 1998.

8.3 Undergraduate and Master’s Theses

[20] Fredrik Heintz. RoboSoc a System for Developing RoboCup Agents for Educational
Use. Master’s thesis, IDA 00/26, Linköping university, Sweden, March 2000.

114



8.4 Platforms to start building team upon

[21] Jan Murray. My goal is my castle – Die höheren Fähigkeiten eines RoboCup-
Agenten am Beispiel des Torwarts. Studienarbeit, Universität Koblenz-Landau,
Germany, March 1999. (German only).

[22] Jan Murray. Soccer Agents Think in UML. Diploma thesis, Universität Koblenz-
Landau, 2001.

[23] Oliver Obst. RoboLog: Eine deduktive Schnittstelle zum RoboCup Soccer Server.
Diploma thesis, Universität Koblenz-Landau, February 1999. (German only).

8.4 Platforms to start building team upon

8.5 Education-related articles

8.6 Machine Learning

[24] Sebastian Buck and Martin A. Riedmiller. Learning situation dependent success
rates of actions in a robocup scenario. In Pacific Rim International Conference on
Artificial Intelligence, page 809, 2000.

[25] Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to
Robotic Soccer. MIT Press, 2000.

8.7 Decision Making

[26] V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma
Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press, Cambridge,
Massachusetts, 2000.

8.8 Other supporting documents

[27] Laws of the games. by FIFA on http://www.fifa.com, 2000. Verified on 12th

February 2001.

[28] W.R. Stevens. UNIX Network Programming. Prentice Hall, 1990.

115



8 References and Further Reading

8.9 Team Descriptions

8.9.1 1996

8.9.2 1997

8.9.3 1998

[29] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-98 Champion
Simulator Team. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98:
Robot Soccer World Cup II. RoboCup Federation, Springer–Verlag, 1998.

8.9.4 1999

[30] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-99 Simulator
Team. In Silvia Coradeschi, Tucker Balch, Gerhard Kraetzschmar, and Peter
Stone, editors, Team Descriptions Simulation League RoboCup’99, pages 7–11.
RoboCup Federation, Linköping University Electronic Press, 1999.

8.9.5 2000

8.9.6 2001

116



A GNU Free Documentation License

Version 1.1, March 2000

Copyright
�

2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document

117



A GNU Free Documentation License

to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section

118



A.3 Copying in Quantity

3.
You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

A.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of added
material, which the general network-using public has access to download anonymously
at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

A.4 Modifications

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

� Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

119



A GNU Free Documentation License

� List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

� State on the Title page the name of the publisher of the Modified Version, as the
publisher.

� Preserve all the copyright notices of the Document.

� Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

� Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

� Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

� Include an unaltered copy of this License.

� Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

� Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

� In any section entitled “Acknowledgements” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

� Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

� Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

� Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

120



A.5 Combining Documents

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties – for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

A.5 Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sections
entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete
all sections entitled “Endorsements.”

121



A GNU Free Documentation License

A.6 Collections of Documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

A.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one quarter of the entire aggregate, the Docu-
ment’s Cover Texts may be placed on covers that surround only the Document within
the aggregate. Otherwise they must appear on covers around the whole aggregate.

A.8 Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version
will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

122



A.10 Future Revisions of This License

License will not have their licenses terminated so long as such parties remain in full
compliance.

A.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License ”or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright
�

YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover
Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

123



A GNU Free Documentation License

124



B Soccerserver

B.1 Soccerserver Parameters

Table B.1: Parameters adjustable in server.conf

Default Current Value
Name Value in server.conf Description

goal width 7.32 14.02 goal width
player size 0.3 player size
player decay 0.4 player decay
player rand 0.1
player weight 60.0 player weight
player speed max 1.0 max. player velocity
player accel max 1.0 max. player acceleration
stamina max 4000.0 max. player stamina
stamina inc max 45.0 max. player stamina increment
recover dec thr 0.3 player recovery decrement

threshold
recover min 0.5 min. player recovery
recover dec 0.002 player recovery decrement
effort dec thr 0.3 player dash effort

decrement threshold
effort min 0.6 min. player dash effort
effort dec 0.005 dash effort decrement
effort inc thr 0.6 dash effort increment treshold
effort inc 0.01 dash effort increment
kick rand 0.0 noise added directly to kicks
team actuator noise flag whether to use team

specific actuator noise
prand factor l factor to multiply prand

for left team
prand factor r factor to multiply prand

for right team
kick rand factor l factor to multiply

kick rand for left team
kick rand factor r factor to multiply

kick rand for right team
ball size 0.085 ball size
ball decay 0.94 ball decay
ball rand 0.05
ball weight 0.2 weight of the ball
ball speed max 2.7 max. ball velocity
ball accel max 2.7 max. ball acceleration
dash power rate 0.006 dash power rate

125



B Soccerserver

Table B.1: (continued)

Default Current Value
Name Value in server.conf Description

kick power rate 0.027 kick power rate
kickable margin 0.7 kickable margin
control radius control radius
catch probability 1.0 goalie catch probability
catchable area l 2.0 goalie catchable area length
catchable area w 1.0 goalie catchable area width
goalie max moves 2 goalie max. moves after a catch
maxpower 100 max power
minpower -100 min power
maxmoment 180 max. moment
minmoment -180 min. moment
maxneckmoment 180 max. neck moment
minneckmoment -180 min. neck moment
maxneckang 90 max. neck angle
minneckang -90 min. neck angle
visible angle 90.0 visible angle
visible distance visible distance
audio cut dist 50.0 audio cut off distance
quantize step 0.1 quantize step of distance

for movable objects
quantize step l 0.01 quantize step of distance

for landmarks
quantize step dir
quantize step dist team l
quantize step dist team r
quantize step dist l team l
quantize step dist l team r
quantize step dir team l
quantize step dir team r
ckick margin 1.0 corner kick margin
wind dir 0.0 0.0 wind direction
wind force 10.0 0.0
wind rand 0.3 0.0
wind none wind factor is none
wind random false wind factor is random
inertia moment 5.0 intertia moment for turn
half time 300 length of a half time in seconds
drop ball time 200 number of cycles to wait until

dropping the ball automatically
port 6000 player port number
coach port 6001 (offline) coach port
olcoach port online coach port
say coach cnt max 128 upper limit of the number of online

coach’s message
say coach msg size 128 upper limit of length of online

coach’s message
simulator step 100 time step of simulation [unit:msec]
send step 150 time step of visual

information [unit:msec]
recv step 10 time step of acception of

126



B.2 Playmodes

Table B.1: (continued)

Default Current Value
Name Value in server.conf Description

commands [unit: msec]
sense body step 100
say msg size 512 string size of say message [unit:byte]
clang win size 300 time window which controls

how many messages can be
sent (coach language)

clang define win 1 number of messages per window
clang meta win 1
clang advice win 1
clang info win 1
clang mess delay 50 delay between receipt of message

and send to players
clang mess per cycle 1 maximum number of coach messages

sent per cycle
hear max 2
hear inc 1
hear decay 2
catch ban cycle 5
coach
coach w referee
old coach hear
send vi step 100 interval of online coach’s look
use offside on flag for using off side rule
offside active area size 5 offside active area size
forbid kick off offside on forbid kick off offside
log file
record
record version 3 flag for record log
record log on flag for record client command log
record messages
send log on flag for send client command log
log times off flag for writing cycle lenth

to log file
verbose off flag for verbose mode
replay
offside kick margin 9.15 offside kick margin
slow down factor
start goal l
start goal r
fullstate l
fullstate r

B.2 Playmodes

The playmodes (including playmodes for viewers) as defined in (server/types.h)

PM_Null,

PM_BeforeKickOff,

PM_TimeOver,

127



B Soccerserver

PM_PlayOn,

PM_KickOff_Left,

PM_KickOff_Right,

PM_KickIn_Left,

PM_KickIn_Right,

PM_FreeKick_Left,

PM_FreeKick_Right,

PM_CornerKick_Left,

PM_CornerKick_Right,

PM_GoalKick_Left,

PM_GoalKick_Right,

PM_AfterGoal_Left,

PM_AfterGoal_Right,

PM_Drop_Ball,

PM_OffSide_Left,

PM_OffSide_Right,

// added for 3D viewer/commentator/small league

PM_PK_Left,

PM_PK_Right,

PM_FirstHalfOver,

PM_Pause,

PM_Human,

PM_Foul_Charge_Left,

PM_Foul_Charge_Right,

PM_Foul_Push_Left,

PM_Foul_Push_Right,

PM_Foul_MultipleAttacker_Left,

PM_Foul_MultipleAttacker_Right,

PM_Foul_BallOut_Left,

PM_Foul_BallOut_Right,

PM_MAX

128



C Soccermonitor

Following is a description of the data structures that are used for communication to the
soccermonitors.

C.1 Monitor Communication Version 1

The container for the 3 different types of information:

typedef struct {

short mode ;

union {

showinfo_t show ;

msginfo_t msg ;

drawinfo_t draw ;

} body ;

} dispinfo_t ;

C.1.1 Showinfo

Contains the information to display a scene.

typedef struct {

char pmode ;

team_t team[2] ;

pos_t pos[MAX_PLAYER * 2 + 1] ;

short time ;

} showinfo_t ;

typedef struct {

char name[16]; /* name of the team */

short score; /* current score of the team */

} team_t ;

typedef struct {

short enable ;

short side ;

short unum ;

129



C Soccermonitor

short angle ;

short x ;

short y ;

} pos_t ;

C.1.2 Messageinfo

Messageinfo t contains all messages from players to the server and from the referee.

typedef struct {

short board ;

char message[2048] ;

} msginfo_t ;

C.1.3 Drawinfo

Drawinfo t allows the server to tell the monitor to draw simple graphics elements.

typedef struct {

short mode ;

union {

pointinfo_t pinfo ;

circleinfo_t cinfo ;

lineinfo_t linfo ;

} object ;

} drawinfo_t ;

typedef struct {

short x ;

short y ;

char color[COLOR_NAME_MAX] ;

} pointinfo_t ;

typedef struct {

short x ;

short y ;

short r ;

char color[COLOR_NAME_MAX] ;

} circleinfo_t ;

typedef struct {

short x1 ;

short y1 ;

short x2 ;

130



C.2 Monitor Communication Version 2

short y2 ;

char color[COLOR_NAME_MAX] ;

} lineinfo_t ;

The mode determines the kind of message the union object contains (server/param.h)

DrawClear 0

DrawPoint 1

DrawCircle 2

DrawLine 3

C.2 Monitor Communication Version 2

The container for the 5 different types of information:

typedef struct {

short mode;

union {

showinfo_t2 show;

msginfo_t msg;

player_type_t ptinfo;

server_params_t sparams;

player_params_t pparams;

} body;

} dispinfo_t2 ;

C.2.1 Showinfo

A showinfo t2 struct is passed every cycle (100 ms) to the monitor and contains the
state and positions of players and the ball.

typedef struct {

char pmode ; // the play mode

team_t team[2] ; // team names and scores

ball_t ball; // ball information

player_t pos[MAX_PLAYER * 2]; // the 22 players

short time ; // current simulation time

} showinfo_t2 ;

Values of the elements can be

� pmode: the playmode (see B.2).

� team: structs containing the teams with index 0 beeing the team playing from left
to right.

� ball: position information of ball (see above).

131



C Soccermonitor

� pos: position information of player (see above) with ndices 0 to 10 for team[0] (left
to right) and 11 to 21 for team[1].

� time: current time ranging from 1 to 12000 (in extra time)

typedef struct {

short mode;

short type;

long x;

long y;

long deltax;

long deltay;

long body_angle;

long head_angle;

long view_width;

short view_quality;

long stamina;

long effort;

long recovery;

short kick_count;

short dash_count;

short turn_count;

short say_count;

short tneck_count;

short catch_count;

short move_count;

short chg_view_count;

} player_t;

typedef struct {

long x;

long y;

long deltax;

long deltay;

} ball_t;

typedef struct {

char name[16];

short score;

} team_t ;

C.2.2 Messageinfo

Contains information of the communication between clients and server and messages
from the referee.

132



C.2 Monitor Communication Version 2

typedef struct {

short board ;

char message[2048] ; /* max_message_length_for_display */

} msginfo_t ;

� board: indicates the type of message. A message with type MSG BOARD (1) is
a message of the referee for the left text window, LOG BOARD (2) are messages
from and to the players. (server/param.h)

� message: zero terminated string containing the message.

C.2.3 Server Parameters

typedef struct {

} server_params_t;

A complete table of the server parameters can be found in the appendix B.1.

C.2.4 Player Type

typedef struct {

short id;

long player_speed_max;

long stamina_inc_max;

long player_decay;

long inertia_moment;

long dash_power_rate;

long player_size;

long kickable_margin;

long kick_rand;

long extra_stamina;

long effort_max;

long effort_min;

long sparelong1;

long sparelong2;

long sparelong3;

long sparelong4;

long sparelong5;

long sparelong6;

long sparelong7;

long sparelong8;

long sparelong9;

long sparelong10;

} player_type_t;

133



C Soccermonitor

C.2.5 Player Parameters

typedef struct {

short player_types;

short subs_max;

short pt_max;

long player_speed_max_delta_min;

long player_speed_max_delta_max;

long stamina_inc_max_delta_factor;

long player_decay_delta_min;

long player_decay_delta_max;

long inertia_moment_delta_factor;

long dash_power_rate_delta_min;

long dash_power_rate_delta_max;

long player_size_delta_factor;

long kickable_margin_delta_min;

long kickable_margin_delta_max;

long kick_rand_delta_factor;

long extra_stamina_delta_min;

long extra_stamina_delta_max;

long effort_max_delta_factor;

long effort_min_delta_factor;

long sparelong1;

long sparelong2;

long sparelong3;

long sparelong4;

long sparelong5;

long sparelong6;

long sparelong7;

long sparelong8;

long sparelong9;

long sparelong10;

short spareshort1;

short spareshort2;

short spareshort3;

short spareshort4;

short spareshort5;

134



C.2 Monitor Communication Version 2

short spareshort6;

short spareshort7;

short spareshort8;

short spareshort9;

short spareshort10;

} player_params_t;

135



C Soccermonitor

136



Index

(ObjName Direction), 33, 76

(ObjName Distance Direction

[DistChange DirChange [Body-

FacingDir HeadFacingDir]]),
75

(ObjName Distance Direction

DistChange DirChange, 33

(ObjName Distance Direction

DistChange DirChange Body-

FacingDir HeadFacingDir ),
33

(ObjName Distance Direction), 33

(b), 76

(bye), 30, 72

(can’t reconnect), 72

(catch CatchCount), 31, 33, 41

(catch Direction), 31, 73

(change view ChangeViewCount), 31,
33

(change view ChangeViewCount)), 41

(change view Width Quality), 31, 75

(dash DashCount), 31, 33, 41

(dash Power), 31, 73

(ear off), 88

(ear on), 88

(error illegal command form), 32, 74

(error no more team or player), 30

(error no more team or player or goalie),
30, 71, 72

(error reconnect), 30, 72

(error unknown command), 32

(eye off), 91

(eye on), 91

(f FlagInfo), 76

(f b 0), 37

(f c), 36

(f l b), 36

(f p l b), 36

(f r b 10), 37

(f t l 20), 37

(g Side), 76

(goal r), 36

(head angle HeadAngle), 31, 33

(head angle HeadDirection), 41

(hear Time Sender ”Message”), 34

(hear Time Sender Message), 76

(init Side UniformNumber PlayMode),
71

(init Side Unum PlayMode), 30

(init TeamName [(version VerNum)]
[(goalie)]), 30, 71

(kick KickCount), 31, 33, 41

(kick Power Direction), 31, 73

(l ...), 37

(look), 91

(move MoveCount), 31, 33, 41

(move X Y ), 31, 74

(ok say), 74

(p [TeamName [Unum]]), 76

(player param Parameters . . . ), 72

(player type id Parameters . . . ), 72

(reconnect Side PlayMode), 30, 72

(reconnect TeamName UniformNum-

ber), 72

(reconnect TeamName Unum), 30

(say Message), 31, 74

(say SayCount), 31, 33, 41

(score Time OurScore OpponentScore),
75

(score), 31, 75

(see Time ObjInfo ObjInfo . . . ), 75

(see global . . . ), 91

137



Index

(sense body), 31, 74
(server param Parameters . . . ), 72
(speed AmountOfSpeed DirectionOf-

Speed), 31, 33, 41
(stamina Stamina Effort), 31, 33, 41
(turn Moment), 31, 73
(turn TurnCount), 31, 33, 41
(turn neck Angle), 31, 74
(turn neck TurnNeckCount), 31, 33, 41
(view mode ViewQuality ViewWidth),

41
-180, 33
-34, 31
-52.5, 31
52.5, 31

1, 30
11, 30
34, 31
180, 33

abort(), 83
assert, 83
audio cut dist, 34, 35, 51, 56, 74, 126

B, 38
b, 38, 76
baccel max, 48
ball accel max, 50, 55, 125
ball decay, 42, 49, 50, 55, 125
ball rand, 42, 49, 50, 55, 125
ball size, 50, 55, 125
ball speed max, 49, 50, 55, 125
ball weight, 55, 125

catch, 15
catch ban cycle, 43, 44, 57, 127
catch probability, 43, 44, 55, 126
catchable area l, 43, 44, 55, 126
catchable area w, 43, 44, 55, 126
change player type, 90, 95
change player type . . . , 52
ckick margin, 56, 126
clang advice win, 57, 127
clang define win, 56, 127

clang info win, 57, 127
clang mess delay, 57, 127
clang mess per cycle, 57, 127

clang meta win, 56, 127
clang win size, 56, 127
coach, 33, 57, 127
coach port, 56, 126
coach w referee, 57, 127

control radius, 55, 126

dash, 14, 41, 42, 44, 51, 52, 54
dash power rate, 42, 44, 46, 55, 125
dash power rate delta max, 46
dash power rate delta min, 46

drop ball time, 56, 126

edp, 44
effort, 45
effort dec, 46, 55, 125
effort dec thr, 46, 55, 125

effort inc, 46, 55, 125
effort inc thr, 46, 55, 125
effort max, 44, 46
effort max delta factor, 46
effort min, 44, 46, 55, 125

effort min delta factor, 46
extra stamina, 46
extra stamina delta max, 44, 46
extra stamina delta min, 44, 46

F, 38
f, 38, 76
forbid kick off offside, 57, 127
fullstate l, 57, 127
fullstate r, 57, 127

G, 38
g, 38, 76
goal width, 55, 125
goalie, 33, 36
goalie max moves, 43, 44, 49, 50, 55, 126

half time, 56, 126
hear, 33, 74
hear decay, 34, 35, 51, 57, 127

138



Index

hear inc, 34, 35, 51, 57, 127
hear max, 34, 35, 51, 57, 127

high, 38, 41, 75

inertia moment, 51, 52, 56, 126

inertia moment delta factor, 51, 52
inertia value, 51
init, 73, 92

kick, 14, 42, 45, 52
kick power rate, 42, 50, 55, 126

kick rand, 48, 50, 55, 125
kick rand delta factor, 48, 50
kick rand factor l, 55, 125

kick rand factor r, 55, 125
kickable margin, 48, 50, 55, 126
kickable margin delta max, 50

kickable margin delta min, 50

l, 71, 76

log file, 57, 127
log times, 57, 127
low, 38, 41, 75

maxmoment, 31, 45, 50–52, 56, 126
maxneckang, 52, 56, 74, 126

maxneckmoment, 31, 52, 56, 126
maxparam, 73
maxpower, 31, 44–46, 50, 55, 73, 126

minmoment, 31, 45, 50–52, 56, 126
minneckang, 52, 56, 74, 126

minneckmoment, 31, 52, 56, 126
minpower, 31, 44–46, 50, 56, 73, 126
move, 13, 43, 49, 54, 91

narrow, 38, 41, 75
normal, 38, 41, 75

off, 88, 91, 92
offside active area size, 57, 127
offside kick margin, 57, 127

olcoach port, 56, 126
old coach hear, 57, 127

on, 88, 91, 92
online coach l, 76

online coach left, 33, 34
online coach r, 76
online coach right, 33, 34

P, 38
p, 33, 36, 38, 76
player accel max, 45, 46, 55, 125
player decay, 42, 45, 46, 51, 55, 125
player decay delta max, 46, 51, 52
player decay delta min, 46, 51, 52
player rand, 42, 45, 46, 55, 125
player size, 55, 125
player speed max, 45, 46, 51, 55, 125
player speed max delta max, 45, 46
player speed max delta min, 45, 46
player types, 52, 53
player weight, 55, 125
port, 56, 126
prand factor l, 55, 125
prand factor r, 55, 125

quantize step, 40, 56, 126
quantize step dir, 56, 126
quantize step dir team l, 56, 126
quantize step dir team r, 56, 126
quantize step dist l team l, 56, 126
quantize step dist l team r, 56, 126
quantize step dist team l, 56, 126
quantize step dist team r, 56, 126
quantize step l, 40, 56, 126

r, 71, 76
record, 57, 127
record log, 57, 127
record messages, 57, 127
record version, 57, 127
recover dec, 46, 55, 125
recover dec thr, 46, 55, 125
recover min, 46, 55, 125
recovery, 45
recv step, 56, 126
referee, 33, 34, 76
replay, 57, 127

say, 34, 49, 51, 74

139



Index

say coach cnt max, 56, 126
say coach msg size, 56, 126
say msg size, 34, 49, 51, 56, 127
score, 31
see, 33, 35
self, 33, 34, 76
send log, 57, 127
send step, 56, 126
send vi step, 57, 127
sense body, 31, 33, 41
sense body step, 41, 56, 127
sense step, 35, 37, 38, 40
simulator step, 56, 126
slow down factor, 57, 127
soccerserver, 33
stamina, 45
stamina inc max, 46, 55, 125
stamina inc max delta factor, 46
stamina max, 44, 46, 55, 125
start goal l, 57, 127
start goal r, 57, 127
subs max, 52, 53

team actuator noise, 55, 125
team far length, 38–40
team too far length, 38–40
turn, 14, 51, 52, 54
turn neck, 51, 52

unum far length, 38–40
unum too far length, 38–40
use offside, 57, 127

verbose, 57, 127
view angle, 38, 39
view frequency, 38
view quality factor, 38
view width factor, 38
visible angle, 37, 38, 40, 56, 126
visible distance, 38–40, 56, 126

wide, 38, 41, 75
wind dir, 45, 46, 49, 50, 56, 126
wind force, 45, 46, 49, 50, 56, 126
wind none, 56, 126

wind rand, 45, 46, 49, 50, 56, 126
wind random, 56, 126

140


