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Abstract. The introduction of a coach competition in the RoboCup-
2001 simulation league raised many questions concerning the develop-
ment of a “coachable” team. This paper addresses the issues of dealing
with conflicting advice and knowing when to listen to advice. An action-
selection architecture is proposed to support the integration of advice
into an agent’s set of beliefs. The results from the coach competition are
discussed and provide a basis for experiments. Results are provided to
support the claim that the architecture is well-suited for such a task.

1 Introduction

In the future, the complexity of the tasks agents will be expected to perform will
dramatically increase. It is not feasible to think one could hand-code execution
plans for agents to utilize in all situations. Instead, it is likely that agents will
employ a generalized architecture capable of integrating advice from external
agents tailored to its current goal. Advice is not necessarily a plan to reach a
goal, but rather hints or directions that will likely aid in the agent’s planning.

In the simulated robotic soccer domain, an online coach acts as an advice-
giving agent [11] [15]. The coach receives a global view of the world but it has
limited opportunities to communicate with the team. Therefore, it is impossible
for the coach to act as a centralized agent controlling the actions of the other
agents. However, a coach has the ability to periodically offer general advice or
suggest changes in the team’s strategy. It is clear that the coach has the potential
to greatly impact the performance of a team; whether it is for better or for worse
depends on how the team chooses to use the advice.

This work describes the issues one must consider while implementing a
“coachable” team. In addition, this work describes how coach advice is inte-
grated into the ChaMeleons-2001 action-selection architecture as well as how
advice from other agents (e.g., a “team captain”, others teammates, or even
humans) can be used [2].

A specific issue of consideration is whether to blindly follow all advice that
is given. For example, the ChaMeleon’s online coach, OWL, offers advice in
the form of passing rules [14] [13]. Consider the situation when an agent has a
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clear shot on goal but one of the coach’s passing rules is applicable - should the
agent follow the advice and pass the ball or should it attempt to score on the
open goal? In the same situation, a human is able to quickly reason about the
choices and realize that an open shot on goal must be an exception to one of the
coach’s rules. How does an agent know when to ignore the coach however? The
coach agent could attempt to make its advice rules more strict, incorporating
exceptions in the rules; however, this is not feasible. Instead, the players need a
mechanism to recognize exceptions to the advice given to them.

An agent should also be allowed to ignore pieces of advice in order to resolve
conflicting rules. As in the example above, a coach gives a rule for player one to
pass to player two given a specific state of the world. Later, the coach observes
that player one should shoot on goal in that very same state. Player one now has
two conflicting pieces of advice and cannot execute both actions simultaneously.
If it chooses to follow the advice of the coach, it must resolve this conflict and
choose only one rule to follow.

A third issue that must be considered is how to handle advice in such a way
that facilitates the inclusion of advice from several sources. The advice could
be weighted differently or organized as a hierarchical mixture of experts similar
to [6].

The design of the ChaMeleons-2001 addresses each one of these issues.

2 Related Work

There has been little research involving online coaches in the RoboCup simula-
tion community. Before RoboCup-2001, the most common uses of a coach were
to communicate formation/role information [1] [3] [4] and setplay information
[4] [12] [16]. Robocup-2001 introduced a standard coach language in which in-
formation is communicated to the players via condition-action rules [15]. With
the introduction of the coach competition in 2001, it is likely that more will
concentrate on developing “coachable” teams.

The idea of integrating advice from an external source is not new though;
McCarthy made the suggestion nearly 45 years ago [9]. However, the number of
systems that have done just this are limited and usually specific to a particular
problem, e.g., integrating advice in Q-learning to increase an agent’s overall
reward [7].

There has also been work that attempts to address how to handle conflicting
advice [5]. This is one of the very same issues soccer agents must address when
accepting advice from other agents. [5] offers four criteria to determine how to
resolve conflicts:

– Specificity - more constraining rules followed first
– Freshness - more recent advice followed first
– Authority - one agent has the ability to over rule another agent’s advice
– Reliability - follow the advice that has the highest probability of success

This technique is much different than how conflicts are resolved in
ChaMeleons-2001. Depending on the type of conflict, advice may be ignored
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or prioritized based on what type of advice is given. Modifications to the ar-
chitecture to support other types of complex conflict resolution, e.g., the ones
proposed by [5], would require implementing only a new behavior arbitrator.

One of the techniques used by the ChaMeleons-2001 to solve conflicts is very
similar to the soft enforcement method introduced by [10]. Soft enforcement gives
preference towards plans consistent with pieces of advice. Advice that introduces
conflicts however are ignored. In the ChaMeleons-2001, before advice is attached
as a child, it is verified as being both recommended and not discouraged by the
coach.

3 Architecture Overview

The ChaMeleons-2001 utilize a hierarchical, behavior-based architecture. Action-
selection for the agents presents itself in the three primary components of the
architecture:

– Individual Behaviors
– Behavior Manager
– Behavior Arbitrator

An agent executes the root behavior each cycle. The root behavior selects
which actions to consider depending on the current world state. The Behavior
Manager is responsible for actually instantiating the behaviors to consider as
well as including other considerations based on the coach’s advice. A Behav-
ior Arbitrator is used to ultimately determine which choice is executed. The
relationship between each component is shown in Figure 1.

Advice From Our Coach
Learned Rules
Formation Information
Set Play Plans

Behavior Manager
Behavior Spawning
Attachment of Coach Advice
Behavior Execution

Behavior Arbitrator
Behavior Selection

Agent

Action Selected

Fig. 1. Action Selection Architecture

3.1 Behaviors

A behavior is a means to achieve a goal. The goal is reached through the execu-
tion of a behavior and a chain of child behaviors. A child behavior is a way to
achieve the goal of its parent and it too may have children of its own. Every child
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of a behavior is an alternative way to achieve the goal of its parent. For example,
the passBall behavior may have many passToPlayer children corresponding to
the different passing options it has. Every behavior also possesses the following
properties:

– Applicability Conditions - Determines whether or not it is appropriate
for the behavior to execute given the current state of the world

– Probabability of Success - The likelihood that the behavior will execute
successfully

– Value - The value of the future world state assuming its execution is suc-
cessful

– Class - Used when integrating advice by adding those behaviors recom-
mended by the coach that match one of the classes of its children. Therefore,
a passToPlayer behavior recommended by the coach is added as a child of
passBall because its class matches one of passBall’s children.

– Source - A behavior is generated by its parent or as a result from advice.
A behavior’s source marks its origin, i.e., parent or coach

Behavior Organization. The behaviors are organized in a hierarchical fashion
with the most primitive actions being at the bottom and the root behavior at
the top. The hierarchy is organized as a directed acyclic graph with vertices and
edges (B, E) where:

B = {b : b is a behavior}
E = {(b1, b2) : b2 is a child of b1}

A behavior’s set of children can be defined in terms of the DAG as:

Children(b) = {c : (b, c) ∈ E}
A primitive action is a behavior at the lowest level of the hierarchy as it has no
children. Each primitive action in the robotic soccer simulator corresponds to
one of the possible actions to send to the server, e.g., kick, turn, dash [15]. The
set of primitive actions is defined as:

A = {a : a ∈ B ∧ (¬∃b)((a, b) ∈ E)}
Given a set of primitive actions, the DAG has the property that there exists a
path from every behavior to at least one primitive action:

(∀b ∈ B)(∃a ∈ A)(∃p)(p is a path from b to a)

Because there exists a path from every behavior to one of the primitive actions,
it is guaranteed that at every simulation cycle, an action will be selected to
execute.
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3.2 Behavior Manager

The Behavior Manager (BM) is the component responsible for all things related
to a behavior’s creation and execution, including the integration of advice. The
BM maintains a pool of fresh behaviors so that they do not have to be repeatedly
instantiated throughout the action-selection process or even across cycles. Stale
behaviors are periodically flushed from the pool in such a way to balance the time
needed to search for behaviors in the pool and the time required to instantiate
new behaviors.

Behaviors are also executed through the BM. The BM logs the execution
state of each behavior and if no action is selected, it may attempt to execute
another behavior [17]. The bookkeeping the BM maintains makes it possible to
trace the complete chain of behaviors considered and executed. As a result, the
architecture used to implement a “coachable” team is also convenient in tracing
and debugging behaviors during development.

Integration of Advice. The BM is also responsible for integrating advice
from the coach. Advice generates new behaviors to be added to a behavior’s
set of children. Given a set Badvice of coach recommended behaviors, the advice
integration is done as follows:

∀b ∈ B∃bc ∈ Children(b)∃ba ∈ Badvicebc.class = ba.class⇒ E ← E ∪ {(b, ba)}
A behavior recommended by the coach is inserted into the set of children of all
behaviors for which it matches one of the behaviors’ classes of children. The inte-
gration of advice from other sources would be done in the same fashion. Because
all behaviors maintain its source as one of its properties, different arbitration
methods, e.g. a hierarchical mixture of experts, could potentially be developed
to decide among the children [6].

3.3 Behavior Arbitrator

A Behavior Arbitrator (Arb) is a function that chooses a single behavior to
execute among a behavior’s set of children. More specifically, given a set of
children a behavior is considering for execution, an arbitrator determines which
child to actually execute. In general, an arbitrator selects the argument c that
maximizes some function f(c):

Arb(b) = argmaxc c ∈ Children(b) ∧ f(c)

The type of arbitrator used depends highly on the class of the behavior, however
they all maximize some function that “scores” each child. Three arbitrators are
described below:

1. Value-Based - The child that maximizes the future state of the world:

Arbvalue(b) = argmaxc c ∈ Children(b) ∧ c.value
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2. Probability of Success - The child with the highest probability of success:

Arbprob(b) = argmaxc c ∈ Children(b) ∧ c.probabilityOfSuccess

3. Coach-Based - If there exists children recommended by the coach, arbitrate
among those choices. Otherwise, choose an alternative arbitration method:

Arbcoach(b) =






argmaxc

c ∈ Children(b)∧
c.src = COACH∧
f(c)

, {c : c.src = COACH} �= ∅

Arb(b) , otherwise






The example arbitrators are all fairly straightforward. The complexity of the
arbitration depends highly on the scoring function, f(c). One could potentially
use decision trees to arbitrate among passing options [17] or neural networks
to determine when and where to shoot on goal [8]. One of the more complex
arbitrators used by the ChaMeleons-2001 is the handleBall BA.

handleBall Arbitrator. The handleBall arbitrator provides a way for the
players to choose what behavior to execute while having possession of the ball,
including when, and when not, to follow the advice of the coach. There exists a
set, P , of priority levels each having a behavior descriptor. Associated with each
priority level is a threshold for the behavior’s probability of success. The prob-
ability threshold, currently hand-coded, must be met in order for the behavior
to execute. When given a set of choices, the behavior with the highest priority
that meets its threshold is executed. A subset of the priority levels and thresh-
olds is shown in Table 1. Please note that it is possible for the same descriptor
to appear with different priorities and thresholds. This allows a behavior to be
considered for execution at more than one priority level based on its threshold
of success. For example, if a shot on goal has a .6 probability of success, it has
a fairly low priority, however, it still might have a higher priority than simply
clearing the ball down the field. A shot with a .8 probability of success has a
much higher priority and therefore would be one of the first behaviors considered
for execution.

There exists a relation, R, from handleBall’s set of children, C, to the set
of priority levels, P . It is possible for a behavior to be described by more than
one priority level. For example, pass forward and pass to less congested could
potentially describe the same behavior. The relation has the property that the
set of behaviors a priority level describes all have the same type:

∀p ∈ P∃b1 ∈ B∃b2 ∈ B
(b1, p) ∈ R ∧ (b2, p) ∈ R ∧ b1 �= b2 ⇒ b1.class = b2.class

In order to choose a single child to execute, the elements in the set of priority
levels are sorted based on the priority of each descriptor:

(∀pi ∈ P )(pi < pi+1)
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Table 1. One Possible Priority Level Ordering

Priority Descriptor Success Probability Threshold
1 shoot on goal .8
2 coach pass for shot .7
3 pass for shot .8
4 pass forward .75
5 dribble to goal .75
6 dribble to corner .8
7 pass to less congested .7
8 coach pass forward .8
9 pass to closer to goal .75
10 pass to better path to goal .8
11 shoot on goal .6

This allows the arbitrator to be defined as a function of a behavior’s probability
of success (probSucc) and its threshold:

ArbhandleBall = argmaxi,b

b ∈ {b : (b, pi) ∈ R}∧
pi ∧ b.probSucc∧
b.probSucc > pi.Threshold

The handleBall arbitrator maximizes both the priority level and the prob-
ability of success for all behaviors at that level, given the constraint that the
threshold is met. The ordering of the priority levels makes it possible to ignore
the coach when it is possible to execute a behavior that is given a higher priority.
For example, an agent should always choose to shoot when the probability of
success is high as opposed to making a coach-recommended pass.

4 Coach Advice

This section gives an overview of the type of advice given by the OWL coach,
which was also created at Carnegie Mellon [14] [13].

There are five main types of advice. The first four are given at the beginning
the game. The first gives a home position for each member of the team to define
a team formation. Next, static marking advice assigns defenders to mark the
opponent forwards, based on the expected opponent formation. Passing advice
is based on trying to imitate another team. Rules are learned about passing
behavior of a team by observing them. Those rules are then sent as advice to
try and mimic the observed team’s behavior. Similarly, rules are learned about
the opponent’s passing, and the advice the agents receive predicts the oppo-
nent’s passes. Finally, during the game play, the coach makes short passing and
movement plans for “set-play” situations, where our team has a free kick. For
information concerning how the advice is generated, please refer to [14] [13].
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Table 2. Results of the 2001 RoboCup Coach Competition

Coach Used
No Coach Wright Eagle Helli Respina Dirty Dozen ChaMeleons-2001

Wright Eagle 8:0 - 0:0 0:0 2:0
Helli-Respina 5:0 2:11 - 0:14 0:0
Dirty Dozen 0:10 0:28 0:29 - 0:20
ChaMeleons-01 0:4 0:6 0:6 0:9 -

5 Experimental Results

The RoboCup simulation league had its first coach competition in 2001. The
competition was open only to teams that supported the standard coach language
[15]. Teams played a baseline game without a coach against a fixed opponent.
A team’s coach is used with all the other teams against the same opponent,
Gemini, and the winner is determined based on a ranking of goal differentials.
The teams were not tested using their own coaches since the competition was
geared towards developing a coach capable of improving the performance of any
team. The goal differentials were determined by differences in goals scored, e.g.,
the goal differential for the Helli-Respina game using the Wright Eagle coach is
-14 (3 fewer goals scored, and 11 more goals allowed).

The results of the coach competition, given in Table 2, were very surprising.
It appeared as if using a coach hindered the performance of every team in every
game throughout the competition. It was believed that due to slight differences
in the interpretation of the coach language semantics, it was very difficult to
support another team’s coach.

What is also interesting is that, in addition to winning the competition with
its coach OWL, the ChaMeleon-2001 appeared to be the most coachable team in
the competition - the team with the largest overall goal differential. This raised
many questions, but statistically significant results cannot be inferred from such
a few number of games. It became obvious that in order to reach any conclusions
about the effects a coach has on a team, many experiments would need to be
conducted.

After RoboCup, hundreds of games were played using different coaches as well
as different advice taking strategies in an attempt to better understand exactly
what happened during the coach competition at RoboCup-2001 and determine
exactly how much impact a coach has on a team. For each experiment, a different
coach or advice-taking strategy was used during thirty regulation length games.
The goal differentials were based on a separate set of games using no coach - the
same as in the coach competition. The fixed opponent remained the same as in
the coach competition, Gemini.

Figure 2 shows the resulting goal differentials using the ChaMeleons-2001
with each of the coaches from that entered the coach competition with the ex-
ception of Wright Eagle. Wright Eagle’s coach was implemented in Windows and
the testing environment set up could not support its inclusion. A statistically
significant improvement in performance is shown by the ChaMeleons-2001 using
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Fig. 2. Goal Differentials Using Several Coaches

every coach tested. Using its own coach, OWL, the ChaMeleons-2001 experi-
enced a three times improvement over the baseline goal differential.

Figure 3 shows the results of the experiments using different advice taking
strategies with a single coach, OWL. The normal coach is the same coach used
above (with the same results). The strict strategy blindly follows all advice that
is given to the agents. As shown, it performs slightly worse though statistically
significant at a level p < .05 with a two-tailed t-test. The random strategy is one
in which truly random advice is sent to the agents. As expected, it performs far
worse than any of the other strategies including not listening to the coach at all.

6 Conclusion

The action-selection architecture for the ChaMeleons-2001 simulated robotic soc-
cer team was designed to integrate advice from many sources. This year, advice
from only the coach agent was used. It was shown experimentally that the ar-
chitecture is successful in its integration of advice and choosing when, and when
not, to listen to the coach agent’s advice. The team saw improvement while us-
ing every coach tested with. The success of the ChaMeleons is due to the agents
ability to ignore the coach when the agents believe they are able to execute a
higher priority action. It can also be concluded that a coach agent does indeed
have the potential to greatly impact the performance of a team.

Although it has been shown that the ChaMeleon’s are indeed a highly coach-
able team, other possibilities for the architecture lie ahead. For example, it is
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Fig. 3. Goal Differentials Using Different Advice-Taking Strategies

possible for the behavior descriptors used by the handleBall to also describe the
sequence of actions performed by an opponent. Given these sequences, rules can
be inferred to describe when an opponent performs an action or an opponent’s
equivalent ordering of priority levels can be learned. A team receiving this advice
from a coach could learn how to mimic the playing style of its opponents - hence
the name ChaMeleons.

Another possibility for the ChaMeleons is the inclusion of several advice
sources. Players could potentially receive advice from other players on the team,
including a “captain.” This raises many questions including which piece of advice
does an agent follow when more than one rule matches from different sources or
how to handle conflicting advice from multiple sources.

The action-selection architecture for the ChaMeleons-2001 was designed to
facilitate both the integration of advice into the agents set of beliefs as well as
other future learning tasks. An attempt was made to ensure that the architecture
was not domain-dependent and could easily be adapted to other problems as
well. As agent research shifts from learning to learning from other agents, the
architecture proposed will provide a framework for others considering some of
the issues involved with the integration of advice.
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