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Abstract. This paper focuses on an investigation of case-based oppo-
nent player modeling in the domain of simulated robotic soccer. While in
previous and related work it has frequently been claimed that the predic-
tion of low-level actions of an opponent agent in this application domain
is infeasible, we show that – at least in certain settings – an online pre-
diction of the opponent’s actions can be made with high accuracy. We
also stress why the ability to know the opponent’s next low-level move
can be of enormous utility to one’s own playing strategy.

1 Introduction

Recognizing and predicting agent behavior is of crucial importance specifically
in adversary domains. The case study presented in this paper is concerned with
the prediction of the low-level behavior of agents in the highly dynamic, het-
erogeneous, and competitive domain of robotic soccer simulation (RoboCup).
Case-based reasoning represents one of the potentially useful methodologies for
accomplishing the analysis of the behavior of a single or a team of agents. In this
sense, the basic idea of our approach is to make a case-based agent observe its
opponent and, in an online fashion, i.e. during real game play, build up a case
base to be used for predicting the opponent’s future actions.

In Section 2, we introduce the opponent modeling problem, point to related
work, and argue why knowing an opponent’s next low-level actions can be ben-
eficial. The remainder of the paper then outlines our case-based methodology
(Section 3), reviews the experimental results we obtained (Section 4), and sum-
marizes and discusses our findings (Section 5).

2 Opponent Modeling in Robotic Soccer Simulation

RoboCup [12] is an international research initiative intending to expedite arti-
ficial intelligence and intelligent robotics research by defining a set of standard
problems where various technologies can and ought to be combined solving them.
Annually, there are championship tournaments in several leagues – ranging from
rescue tasks over real soccer-playing robots to simulated ones.
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2.1 Robotic Soccer Simulation

The focus of the paper at hand is laid upon RoboCup’s 2D Simulation League,
where two teams of simulated soccer-playing agents compete against one another
using the Soccer Server [10], a real-time soccer simulation system.

The Soccer Server allows autonomous software agents written in an arbitrary
programming language to play soccer in a client/server-based style: The server
simulates the playing field, communication, the environment and its dynamics,
while the clients – eleven autonomous agents per team – connect to the server
and are permitted to send their intended actions (e.g. a parameterized kick or
dash command) once per simulation cycle to the server via UDP. Then, the
server takes all agents’ actions into account, computes the subsequent world
state and provides all agents with (partial) information about their environment
via appropriate messages over UDP.

So, decision making must be performed in real-time or, more precisely, in dis-
crete time steps: Every 100ms the agents can execute a low-level action and the
world-state will change based on the individual actions of all players. Speaking
about low-level actions, we should make clear that the actions themselves are
“parameterized basic actions” and the agent can execute only one of them per
time step:

– dash(x, α) – lets the agent accelerate along its current body orientation by
relative power x ∈ [0, 100] (if it does not accelerate, then its velocity decays)
into direction α ∈ (−180, 180] relative to its body orientation

– turn(α) – makes the agent turn its body by α ∈ (−180, 180] where, however,
the Soccer Server reduces α depending on the player’s current velocity in
order to simulate an inertia moment

– kick(x, α) – has an effect only, if the ball is within the player’s kick range
(1.085m around the player) and yields a kick of the ball by relative power
x ∈ [0, 100] into direction α ∈ (−180, 180]

– There exist a few further actions (like tackling1, playing foul, or, for the goal
keeper, catching the ball) whose exact description is beyond scope.

Given this short description of the most important low-level actions that can
be employed by the agent, it is clear that these basic actions must be combined
cleverly in consecutive time steps in order to create “higher-level actions” like
intercepting balls, playing passes, doing dribblings, or marking players. We will
call those higher-level actions skills in the remainder of this paper.

Robotic Soccer represents an excellent testbed for machine learning, includ-
ing approaches that involve case-based reasoning. For example, several research
groups have dealt with the task of learning parts of a soccer-playing agent’s
behavior autonomously (for instance [9, 8, 3]). In [6], as an other example, we
specifically addressed the issue of using CBR for the development of a player
agent skill for intercepting balls.

1 To tackle for the ball with a low-level action tackle(α) means to straddle for the ball
and thus changing its velocity, even if it is not in the player’s immediate kick range;
such an action succeeds only with limited probability which decreases the farther
the ball is away from the agent.
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2.2 Related Work on Opponent Modeling

Opponent modeling is an important factor that can contribute substantially to
a player’s capabilities in a game, since it enables the prediction of future actions
of the opponent. In doing so, it also allows for adapting one’s own behavior
accordingly. Case-based reasoning has been frequently used as a technique for
opponent modeling in multi-agent games [4], including the domain of robotic
soccer [13, 1].

Using CBR, in [13] the authors make their simulated soccer agents recognize
currently executed higher-lever behaviors of the currently ball leading opponent
player. These include passing, dribbling, goal-kicking and clearing. These higher-
level behaviors correspond to what we refer to as skills, i.e. action sequences that
are executed over a dozen or more time steps. This longer time horizon allows
the agent to take appropriate counter measures.

The authors of [11] also deal with the case-based recognition of skills (higher-
level behaviors, to be exact the shoot-on-goal skill) executed by an opponent
soccer player, focusing on the appropriate adjustment of the similarity measure
employed. While we do also think opponent modeling is useful for counteracting
adversary agents, we, however, disagree with these authors claiming that “in a
complex domain such as RoboCup it is infeasible to predict an agent’s behavior
in terms of primitive actions”. Instead we will show empirically that such a low-
level action prediction can be achieved during an on-going play using case-based
methods. To this end, the work presented in this paper is also related to the work
by Floyd et al. [5] whose goal is to mimic the overall behavior of entire soccer
simulation teams, be it for the purpose of analysis or for rapid prototyping when
developing one’s own team, without putting too much emphasis on whether the
imitators yield competitive behavior.

2.3 Related Previous Work

What is the use of knowing exactly whether an opponent is going to execute a
kick(40, 30◦) or a dash(80, 0◦) low-level action next? This piece of information
certainly does not reveal whether this opponent’s intention is to play a pass (and
to which teammate) in the near future or to dribble along. Clearly, for answering
questions like that the approaches listed in the previous section are potentially
more useful. But knowing the opposing agent’s next low-level actions is extremely
useful, when knowing the next state on the field is essential (cf. Figure 1 for an
illustration).

In [7], we considered a soccer simulation defense scenario of crucial impor-
tance: We focused on situations where one of our players had to interfere and
disturb an opponent ball leading player in order to scotch the opponent team’s
attack at an early stage and, even better, to eventually conquer the ball initiat-
ing a counter attack. We employed a reinforcement learning (RL) methodology
that enabled our agents to autonomously acquire such an aggressive duel behav-
ior, and we successfully embedded it into our soccer simulation team’s defensive
strategy. So, the goal was to learn a so-called “duelling skill” (i.e. a higher-level
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behavior which in the end yields a sequence of low-level actions) which made
our agent conquer the ball from the ball-leading opponent.
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Fig. 1. In the top-left we see the current state of an opponent agent in ball possession.
If we assume, this agent does not take any low-level action, then the resulting successor
state looks like the one in the bottom left figure: Player and ball have moved according
to their recent velocities while the magnitude of the velocity vectors have decayed
according to the rules of the simulation. How different the successor state may look,
if the opponent, however, does take an action (which is most likely), is shown in the
right figures. In example 1 (top) the agent accelerates full power along its current body
orientation, while the ball is not affected. In example 2, the player kicks the ball with
50% power into -90◦ relative to its current body orientation which yields a resulting
ball velocity vector as shown in the bottom right.

An important feature of the soccer simulation domain is that the model of
the environment is known. This means given, for example, the current position
and velocity of the ball, it is possible for any agent to calculate the position of the
ball in the next time step (because the implementation of the physical simulation
by the Soccer Server is open source2). As a second example, when knowing one’s
own current position, velocity and body angle, and issuing a turn(68◦) low-level
action, the agent can precalculate the position, velocity and body orientation it
will have in the next step. Or, finally, when the agent knows the position and
velocity of the ball, it can precalculate the ball’s position and velocity in the
next step, for any kick(x, α) command that it might issue.

Knowing the model of the environment (formally, the transition function
p : S × A × S → R where p(s, a, s′) tells the probability to end up in the next
state s′ when executing action a in the current state s), is extremely advanta-
geous in reinforcement learning, since then model-based instead of model-free

2 In practice, the Soccer Server adds some noise to all low-level actions executed, but
this is of minor importance to our concerns.
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learning algorithms can be applied which typically comes along with a pleasant
simplification of the learning task.

So, in soccer simulation the transition function p (model of the environment)
is given since the way the Soccer Server simulates a soccer match is known. In
the above-mentioned “duelling task”, however, the situation is aggravated: Here,
we have to consider the influence of an opponent whose next actions cannot be
controlled. In [7], we stated that the opponent’s next (low-level) actions can
“hardly be predicted [which] makes it impossible to accurately anticipate the
successor state”, knowing which is, as pointed out, extremely useful in RL. In
the paper at hand, we will show that predicting the opponent’s next low-level
action might be easier than expected. As a consequence,

– in [7] we had to rely on a rough approximation of p, that merely takes into
account that part of the state that can be influenced directly by the learning
agent and which ignored the part of the future state which is under direct
control of the ball-leading opponent (e.g. the position of the ball in the next
state). This corresponded to the unrealistic assumption of an opponent that
never takes any action (cf. Figure 1, bottom left).

– in future work we can employ a much more accurate version of p based on
the case-based prediction of the opponent’s low-level actions described in the
next section.

3 Case-Based Prediction of Low-Level Actions

In what follows, we differentiate between an opponent (OPP) agent whose next
low-level actions are to be predicted as well as (our) case-based agent (CBA)
that essentially observes the opponent and that is going to build up a case base
to be used for the prediction of OPP’s actions.

When approaching the opponent modeling problem as a case-based reasoning
problem, the goal of the case-based agent is to correctly predict the next action of
its opponent given a characterization of the current situation. Stated differently,
the current state of the system (including the case-based agent itself, its opponent
as well as all other relevant objects) represents a new query q. CBA’s case base
C is made up of cases c = (p, s) whose problem parts p correspond to other,
older situations and corresponding solutions s which describe the action OPP
has taken in situation p. Next, the case-based agent will search its case base for
that case ĉ = (p̂, ŝ) ∈ C (or for a set of k such cases) whose problem part features
the highest similarity to the current problem q and employ its solution ŝ as the
current prediction of the opponent’s next action.

3.1 Problem Modeling

In the context of this case study we focus on dribbling opponents, i.e. the op-
ponent has the ball in its kick range and moves along while keeping the ball
within its kick range all the time. Stated differently, we focus on situations
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where OPP behaves according to some “dribble skill” (a higher-level dribbling
behavior). Consequently, OPP executes in each time step one of the three ac-
tions kick(x, α), dash(x, α), or turn(α). The standard rules of the simulation
allow x to be from [0, 100] and α from (−180◦, 180◦] for kicks and turns. For
dashes, α is allowed to take one out of eight values (multiples of 45◦). In almost
all cases occurring during normal play, however, a dribbling player is heading
more or less towards his opponent’s goal which is why the execution of low-level
turn actions represents an exceptional case. Therefore, for the time being, we
leave turn actions aside and focus on the correct prediction of dashes and kicks
including their parameters x and α.

Case Structure The state of the dribbling opponent (OPP) can be characterized
by the x and y position of the ball within its kick range (posb,x and posb,y)
relative to the center of OPP as well as the x and y components of the ball’s
velocity (velb,x and velb,y; of course, these values are also relative to OPP’s
body orientation). Moreover, OPP’s x and y velocities (velp,x and velp,y) are
of relevance, making six features in total. The seventh relevant feature, OPP’s
current body orientation θp can be skipped due to the arguments mentioned
in the preceding paragraph. Furthermore, the y component of OPP’s velocity
vector velp,y is, in general, zero since a dribbling player almost always dribbles
along its current body orientation. While this allows us to also skip the sixth
feature, we remove a redundancy in the remaining features (and thus arrive at
only four of them) by changing to a relative state description that incorporates
some background knowledge3 from the simulation. Hence, the problem part p of
a case c = (p, s) is a four-tuple p = (posbnx, posbny, velbnx, velbny) with

posbnx = posb,x + 0.94 · velb,x − 0.4 · velp,x
posbny = posb,y + 0.94 · velb,y − 0.4 · velp,y
velpnx = 0.94 · velb,x − 0.4 · velp,x
velpny = 0.94 · velb,y − 0.4 · velp,y

where all components characterize the next state as it would arise, if the agent
would not take any action (cf. Figure 1).

The solution s of a case c = (p, s) consists of a class label l (“dash” or “kick”)
as well as two accompanying real-valued attributes for the power x and angle α
parameters of the respective action. Thus, the solution is a triple s = (l, x, α).

3.2 Implementing the CBR Cycle

The case-based agent CBA observes his opponent OPP and, in doing so, builds
up its case base. Note that all agents in soccer simulation act on incomplete and
uncertain information. Their visual input consists of noisy information about
objects in their limited field of vision. However, if the observed opponents are

3 Knowledge about how the Soccer Server decays objects.
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near and constantly focused at, CBA is provided with sufficiently accurate vi-
sual state information. In order to fill the contents of the cases’ solution parts,
however, CBA must apply inverse dynamics of the soccer simulation. If CBA,
for example, observes that the velocity vector of the ball has been changed at
time t+1 as in the bottom right part of Figure 1, then it can conclude that OPP
has executed a kick(50,−90◦) action at time t and can use that information to
complete the case it created at time step t.

With ongoing observation of dribbling opponent players, CBA’s case base C
grows and becomes more and more competent. Therefore, after |C| exceeds some
threshold, CBA can utilize its case base and query it to find a prediction of the
action that OPP is going to take in the current time step.

Retrieval and Similarity Measures We model the problem similarity using the
local-global principle [2] with identical local similarity measures for all problem
attributes, simi(qi, ci) = ( qi−ci

maxi−mini
)2, where mini and maxi denote the mini-

mum and maximum value of the domain of the ith feature. The global similarity
is formed as a weighted average according to

Sim(q, c) =

∑n
i=1 wi · simi(qi, ci)∑n

i=1 wi

where attributes posbnx and posbny are weighted twice as much as velpnx and
velpny.

We perform standard k-nearest neighbor retrieval using a value of k = 3 in
our experiments. When predicting the class of the solution, i.e. the type of the
low-level action (dash or kick), we apply a majority voting, and for the prediction
of the action parameters (x and α) we calculate the average over all cases among
the k nearest neighbors whose class label matches the majority class.

4 Experimental Results

To evaluate our approach we selected a set of contemporary soccer simulation
team binaries (top teams from recent years) and made one of their agents (OPP)
dribble for up to 2000 simulated time steps4. Our case-based agent CBA was
allowed meanwhile to observe OPP and build up its case base. We evaluated
CBA’s performance in predicting OPP’s low-level actions for increasing case
base sizes.

Figure 2 visualizes the learning progress against an opponent agent from
team WrightEagle. As can be seen, compelling accuracies can be achieved for
both, the correctness of the type of the action (dash or kick) as well as for the
belonging action parameters. Interestingly, even the relative power / angle of
kicks can be predicted quite reliably with a remaining absolute error of less than
ten percent / ten degrees.

4 Duration of a regular match is 6000 time steps.
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Fig. 2. Progress of CBA’s competence in predicting the next low-level actions of a
dribbling opponent agent from team WrightEagle. A case base of about 1500 cases was
created during the course of 2000 simulated time steps.

Figure 3 focuses on different opponent agents and highlights the fact that a
substantial improvement in action type prediction accuracy can be obtained with
as little as 100 collected cases. Baseline to all these classification experiments is
the error of the “trivial” classifier (black) that predicts each action type to be
of the majority class. The right part of Figure 3 presents the recall of both,
dash and kick actions. Apparently, dashes are somewhat easier to predict than
kicks where, however, the recall of the latter is still above 65% for each of the
opponent agents considered.
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Fig. 3. Left: Case-based prediction of the type (dash or kick) of the next low-level
action for opponents from different teams. Right: Recall, i.e. share of dashes that were
correctly predicted as dashes and kicks that were correctly predicted as kicks.

In Figure 4, we present aggregate numbers (averages over all opponents) that
emphasize how accurately the parameters of an action were predicted, given that
the type of the action could be identified correctly. To this end, dash angles
α are disregarded since more than 99.2% of all dash actions performed used
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α = 0, i.e. yielded a dash forward. Here, we compare (a) an “early” case base
with only 10 cases, (b) an intermediate one5 with |C| = 100 as well as (c)
one that has resulted from 2000 simulated time steps and contains circa 1500
cases. Interestingly, even in (a) comparatively low errors can be obtained. In (b)
and (c), however, the resulting average absolute prediction errors become really
competitive (±2.9 for dash powers x with x ∈ [0, 100], ±6.3 for kick powers x
with x ∈ [0, 100], and ±19.7◦ for kick angles α with α ∈ [0◦, 360◦]).

29,3

19,7

32,3

23,6

32,1

35,3

Average Error in Predicted Kick Angle (within [0°,360°]),
Standard Deviations in Gray

8,3

12,3

3,7

9,0

2,9

6,3

0

2

4

6

8

10

12

14

Average Error in Dash Power Average Error in Kick Power

A
ve

ra
ge

 E
rr

o
r

(w
it

h
in

 [
0

,1
0

0
])

|CB|=10

|CB|=100

|CB|~1500

Fig. 4. Exactness of the prediction of the action parameters for different stages during
ongoing learning (10, 100, and ≈1500 cases in the case base). Left: Average error of
the predicted angle of a kick action. Right: Average error of the predicted relative
power of a kick action and dash action (averages over agents from all opponent teams
considered).

5 Discussion and Conclusion

Clearly, dribbling opponents are very likely to behave differently when they are
disturbed, tackled, or attacked by a nearby opponent. Therefore, the approach
presented needs to be extended to “duelling situations” as they frequently arise
in real matches. For example, in scenarios like that the dribbler will presumably
not just dribble straight ahead, but also frequently execute turn actions (e.g. in
order to dribble around its disturber). This represents an aggravation of the
action type prediction problem since then three instead of two classes of actions
must be considered (dask, kick, turn).

While the case study presented focused solely on non-attacked dribbling op-
ponents, this approach can easily be transferred to related or similar situations
where knowing the opponent’s next move is crucial, too. This includes, but is
not limited to the behavior of an opponent striker when trying to perform a
shoot onto the goal (which typically requires a couple of time steps), the behav-
ior of the shooter as well as the goal keeper during penalty shoot-outs, or the
positioning behavior of the opponent goalie (anticipating which can be essential
for the striker).

As a next step, we plan to combine the presented case-based prediction of low-
level actions with the reinforcement learning-based acquisition of agent behaviors
as outlined in Section 2.3. This involves, first, solving the aggravated problem of

5 A case base of a size of about 100 to 500 cases can easily be created within the first
half of a match for most players.
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correctly recognizing three different classes of low-level actions mentioned at the
beginning of this section and, second, a proper utilization of the thereby obtained
improved model when learning a higher-level duelling skill using RL. Another
interesting direction for future work is the idea to let CBA start off with some
opponent model in form of a case-base acquired offline (against, for example,
an older version of the team to be faced) and, using appropriate techniques for
case base maintenance, to successively replace old experience by new experience
gained online during the current match.
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