RoboLog Koblenz 2002 – Visualization Description

Oliver Obst and Christoph Ringelstein
Universität Koblenz-Landau, AI research group
Universitätsstr. 1, D–56072 Koblenz, GERMANY
{fruit,cringel}@uni-koblenz.de · http://www.robolog.org/

Background. The RoboLog Koblenz team has participated in the RoboCup simulator
competitions since 1999. Currently, the whole team consists of 10 people (see also
our web page www.robolog.org). This year for the first time, we participate also in the
presentation competition with a 3D visualization of simulation league games. The idea
to start with a visualization arose during a practical, where students had to develop parts
of a computer game with indoor and outdoor areas.

The Visualization. Our visualization has been developed under MS Windows using
C++, and performance critical parts have been coded in assembler. Libraries we use are
DevIL, Glu and OpenGL.

The main idea was to create a monitor where games are pleasant to be watched with,
rather than trying to simulate humans playing soccer. On the other hand the monitor
should be useful for debugging purposes and analysis of soccer games. Because of this,
most if not all information available from the Soccer Server should be displayed on
the screen. The network interface to our monitor is based on the 2D Soccer Monitors
coming with the Soccer Server [1].

Camera Control. The location and movement of the camera can be controlled interac-
tively, so that it is possible to have a look at areas which are of minor interest during
regular games but important during the development. Additionally, the camera can be
controlled automatically. The main focus of research for this part of the visualization
was to simulate a camera control similar to that of real soccer games.

Graphical Effects. We are using multi-texturing for more realistic surfaces of objects,
that is detail and bump mapping. For light and shadow effects we are using light maps.
Additionally, we created a particle system for animated effects during a simulation,
which is used for visual effects emphasizing motion of objects.

Future Work. For later work, we want our visualization to provide more statistical in-
formation, which might be of interest for both spectators and developers. Additionally,
we want our visualization to be used for a 3D soccer server.

References.
1. E. Foroughi, F. Heintz, S. Kapetanakis, K. Kostiadis, J. Kummeneje, I. Noda, O. Obst, P. Ri-